Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 49(1): 398-409, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36266142

RESUMO

Shear wave elastography is an emerging diagnostic tool used to assess for changes in the stiffness of muscle. Each region of the muscle may have a different stiffness; therefore, the anatomical region should be carefully selected. Machine vendors each have unique methods for calculating the returned stiffness values and, consequently, a high level of agreement in measurement between machines (quantified using the intraclass correlation coefficient [ICC] and Bland-Altman analysis) will allow research findings to be translated to the clinic. This study assessed three locations within the biceps muscle (50% and 75% of the distance between the acromioclavicular joint and antecubital fossa, and superior to distal myotendinous junction [MTJ]) of 32 healthy volunteers with two different machines, the Canon Aplio i600 and SuperSonic Imagine Aixplorer (SSI), to compare the reported shear wave velocities and the variability by coefficient of variation (CV) and ICC. There was no difference in the CV between machines, but a significant difference in the CV at muscle regions, with the 75% location having a 40.2% reduction in CV. The 75% location had the highest ICC values with good posterior mean ICCs of 0.84 on the Canon and 0.83 on the SSI. The 50% and MTJ locations had poor ICC values. The 75% location provided the lowest CV and highest ICC and should be used for future stiffness assessments.


Assuntos
Técnicas de Imagem por Elasticidade , Humanos , Técnicas de Imagem por Elasticidade/métodos , Ultrassonografia/métodos , Braço/diagnóstico por imagem , Músculo Esquelético/diagnóstico por imagem , Cotovelo , Reprodutibilidade dos Testes
2.
Insights Imaging ; 13(1): 67, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380302

RESUMO

BACKGROUND: Post-stroke muscle stiffness is a major challenge in the rehabilitation of stroke survivors, with no gold standard in clinical assessment. Muscle stiffness is typically evaluated by the Modified Ashworth Scale or the Tardieu Scale; however, these can have low reliability and sensitivity. Ultrasound elastography is an advanced imaging technology that can quantitatively measure the stiffness of a tissue and has been shown to have good construct validity when compared to clinically assessed muscle stiffness and functional motor recovery. OBJECTIVE: The purpose of this article is to systematically review the literature regarding the change in muscle stiffness as measured by ultrasound elastography in stroke survivors. METHODS: Scopus, PubMed, Embase, CINAHL, MEDLINE and Cochrane Library were searched for relevant studies that assessed the change in stiffness of post-stroke muscle stiffness measured by ultrasound elastography following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. RESULTS: In total, 29 articles were identified, using either strain elastography and shear wave elastography to measure the stiffness of muscles in stroke survivors, most frequently in the biceps and medial gastrocnemius muscles. The stiffness was typically higher in the paretic compared to the non-paretic or healthy control. Other variations that increased the stiffness include increasing the joint angle and introducing a passive stretch or muscle activation. The paretic muscle has also been assessed pre- and post-treatment demonstrating a decrease in stiffness. CONCLUSION: Ultrasound elastography is a promising imaging technology for determining the muscle stiffness in stroke survivors with need for a standardized imaging protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA