Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
mBio ; 14(5): e0139523, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37830811

RESUMO

IMPORTANCE: It is well established that exopolysaccharide (EPS) is an integral structural component of bacterial biofilms necessary for assembly and maintenance of the three-dimensional architecture of the biofilm. However, the process and role of EPS turnover within a developing biofilm is not fully understood. Here, we demonstrated that Xylella fastidiosa uses a self-produced endoglucanase to enzymatically process its own EPS to modulate EPS polymer length. This enzymatic processing of EPS dictates the early stages of X. fastidiosa's biofilm development, which, in turn, affects its behavior in planta. A deletion mutant that cannot produce the endoglucanase was hypervirulent, thereby linking enzymatic processing of EPS to attenuation of virulence in symptomatic hosts, which may be a vestige of X. fastidiosa's commensal behavior in many of its other non-symptomatic hosts.


Assuntos
Celulase , Xylella , Celulase/genética , Polímeros , Biofilmes , Xylella/genética
3.
New Phytol ; 239(2): 687-704, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149885

RESUMO

Priming is an adaptive mechanism that fortifies plant defense by enhancing activation of induced defense responses following pathogen challenge. Microorganisms have signature microbe-associated molecular patterns (MAMPs) that induce the primed state. The lipopolysaccharide (LPS) MAMP isolated from the xylem-limited pathogenic bacterium, Xylella fastidiosa, acts as a priming stimulus in Vitis vinifera grapevines. Grapevines primed with LPS developed significantly less internal tyloses and external disease symptoms than naive vines. Differential gene expression analysis indicated major transcriptomic reprogramming during the priming and postpathogen challenge phases. Furthermore, the number of differentially expressed genes increased temporally and spatially in primed vines, but not in naive vines during the postpathogen challenge phase. Using a weighted gene co-expression analysis, we determined that primed vines have more genes that are co-expressed in both local and systemic petioles than naive vines indicating an inherent synchronicity that underlies the systemic response to this vascular pathogen specific to primed plants. We identified a cationic peroxidase, VviCP1, that was upregulated during the priming and postpathogen challenge phases in an LPS-dependent manner. Transgenic expression of VviCP1 conferred significant disease resistance, thus, demonstrating that grapevine is a robust model for mining and expressing genes linked to defense priming and disease resistance.


Assuntos
Resistência à Doença , Lipopolissacarídeos , Doenças das Plantas , Vitis , Resistência à Doença/genética , Lipopolissacarídeos/farmacologia , Peroxidase , Doenças das Plantas/microbiologia , Vitis/genética , Xilema
4.
Mol Plant Microbe Interact ; 36(10): 636-646, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37188464

RESUMO

Xylella fastidiosa is a xylem-limited bacterial pathogen that causes Pierce's disease (PD) of grapevine. In host plants, this bacterium exclusively colonizes the xylem, which is primarily non-living at maturity. Understanding how X. fastidiosa interfaces with this specialized conductive tissue is at the forefront of investigation for this pathosystem. Unlike many bacterial plant pathogens, X. fastidiosa lacks a type III secretion system and cognate effectors that aid in host colonization. Instead, X. fastidiosa utilizes plant cell-wall hydrolytic enzymes and lipases as part of its xylem colonization strategy. Several of these virulence factors are predicted to be secreted via the type II secretion system (T2SS), the main terminal branch of the Sec-dependent general secretory pathway. In this study, we constructed null mutants in xpsE and xpsG, which encode for the ATPase that drives the T2SS and the major structural pseudopilin of the T2SS, respectively. Both mutants were non-pathogenic and unable to effectively colonize Vitis vinifera grapevines, demonstrating that the T2SS is required for X. fastidiosa infection processes. Furthermore, we utilized mass spectrometry to identify type II-dependent proteins in the X. fastidiosa secretome. In vitro, we identified six type II-dependent proteins in the secretome that included three lipases, a ß-1,4-cellobiohydrolase, a protease, and a conserved hypothetical protein. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Sistemas de Secreção Tipo II , Vitis , Xylella , Virulência , Sistemas de Secreção Tipo II/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Doenças das Plantas/microbiologia , Vitis/microbiologia
5.
Microbiol Resour Announc ; 12(5): e0010123, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37042758

RESUMO

The genomes of eighteen Fusarium isolates cultured from diseased and healthy citrus trees were sequenced, assembled, and annotated. Isolate species identification was confirmed using single marker (TEF1-alpha) phylogenetic assessment. Studies of the traits and genotypes of plant-associated isolates are important to understanding the fungal contribution to phytobiomes of citrus.

6.
Front Microbiol ; 14: 1100590, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910183

RESUMO

The citrus root and rhizosphere microbiomes have been relatively well described in the literature, especially in the context of Huanglonbing disease. Yet questions addressing the assembly of root microbial endophytes have remained unanswered. In the above ground tree tissues, leaves and stems have been the research focus point, while flush and flower microbiomes, two important tissues in the vegetative and reproductive cycles of the tree, are not well described. In this study, the fungal and bacterial taxa in five biocompartments (bulk soil, rhizosphere, root endosphere, flower and flush) of citrus trees grown in a single California orchard were profiled using an amplicon-based metagenomic Illumina sequencing approach. Trees with no observable signs of abiotic or biotic stresses were sampled for two consecutive years during the floral development phase. The rhizosphere was the most biodiverse compartment compared to bulk soil, root endosphere, flower and flush microbiomes. In addition, the belowground bacteriome was more diverse than the mycobiome. Microbial richness decreased significantly from the root exosphere to the endosphere and was overall low in the above ground tissues. Root endophytic microbial community composition shared strong similarities to the rhizosphere but also contained few taxa from above ground tissues. Our data indicated compartmentalization of the microbiome with distinct profiles between above and below ground microbial communities. However, several taxa were present across all compartments suggesting the existence of a core citrus microbiota. These findings highlight key microbial taxa that could be engineered as biopesticides and biofertilizers for citriculture.

7.
Am J Physiol Endocrinol Metab ; 323(6): E492-E502, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36223522

RESUMO

Secretion of insulin from the pancreas is pulsatile, driven by intrinsic oscillations within individual islets of Langerhans. The secretions are coordinated among the many islets distributed throughout the pancreas producing a synchronized rhythm in vivo that is essential for maintaining normal glucose levels. One hypothesized mechanism for the coordination of islet activity is negative feedback, whereby sequestration of glucose in response to elevated insulin leads to a reduction in the blood glucose level that is sensed by the islet population. This global signal of glucose then coordinates the individual islets. In this study, we tested how this coordination mechanism is affected by time delays in the negative feedback, using a microfluidic system to monitor Ca2+ levels in a small population of islets and implementing glucose control through a negative feedback system. We found that islet synchronization occurs even with time delays in the feedback of up to 7 min. We also found that a second, slower closed-loop oscillation period is produced during delayed feedback in which islet oscillations are clustered into episodes. The period of this second oscillatory mode increases with the time delay and appears to be a second stable behavior that coexists with the faster synchronized oscillation. The general conclusion is that islet coordination through negative feedback is a viable means of islet coordination that is robust to delays in the timing of the feedback, and could complement other potential coordination mechanisms such as entrainment by pancreatic ganglia.NEW & NOTEWORTHY Insulin secretion from islets of Langerhans is rhythmic, and these rhythms are coordinated to produce oscillatory plasma insulin levels. Using a combination of microfluidics and computational modeling, we demonstrate that coordination can occur through negative feedback of the type provided by the liver, even if that feedback is delayed by several minutes. We also demonstrate that a second, slower, mode of oscillations can occur when feedback is delayed where faster oscillations are grouped into episodes.


Assuntos
Ilhotas Pancreáticas , Retroalimentação , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina , Insulina/metabolismo , Glucose/metabolismo
8.
Appl Environ Microbiol ; 88(18): e0122022, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36094203

RESUMO

Xylella fastidiosa infects several economically important crops in the Americas, and it also recently emerged in Europe. Here, using a set of Xylella genomes reflective of the genus-wide diversity, we performed a pan-genome analysis based on both core and accessory genes for two purposes: (i) to test associations between genetic divergence and plant host species and (ii) to identify positively selected genes that are potentially involved in arms-race dynamics. For the former, tests yielded significant evidence for the specialization of X. fastidiosa to plant host species. This observation contributes to a growing literature suggesting that the phylogenetic history of X. fastidiosa lineages affects the host range. For the latter, our analyses uncovered evidence of positive selection across codons for 5.3% (67 of 1,257) of the core genes and 5.4% (201 of 3,691) of the accessory genes. These genes are candidates to encode interacting factors with plant and insect hosts. Most of these genes had unknown functions, but we did identify some tractable candidates, including nagZ_2, which encodes a beta-glucosidase that is important for Neisseria gonorrhoeae biofilm formation; cya, which modulates gene expression in pathogenic bacteria, and barA, a membrane associated histidine kinase that has roles in cell division, metabolism, and pili formation. IMPORTANCE Xylella fastidiosa causes devasting diseases to several critical crops. Because X. fastidiosa colonizes and infects many plant species, it is important to understand whether the genome of X. fastidiosa has genetic determinants that underlie specialization to specific host plants. We analyzed genome sequences of X. fastidiosa to investigate evolutionary relationships and to test for evidence of positive selection on specific genes. We found a significant signal between genome diversity and host plants, consistent with bacterial specialization to specific plant hosts. By screening for positive selection, we identified both core and accessory genes that may affect pathogenicity, including genes involved in biofilm formation.


Assuntos
Celulases , Xylella , Celulases/genética , Histidina Quinase/genética , Especificidade de Hospedeiro , Filogenia , Doenças das Plantas/microbiologia , Plantas/microbiologia , Xylella/genética
9.
mBio ; 13(3): e0034322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35642946

RESUMO

Emerging research indicates that plant-associated microbes can alter plant developmental timing. However, it is unclear if host phenology affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants face challenges in separating effects of tissue age from phenological driven effects on the microbiome. In contrast, evergreen perennial trees, like Citrus sinensis, retain leaves for years, allowing for uniform sampling of similarly aged leaves from the same developmental cohort. This aids in separating phenological effects on the microbiome from impacts due to annual leaf maturation/senescence. Here, we used this system to test the hypothesis that host phenology acts as a driver of microbiome composition. Citrus sinensis leaves and roots were sampled during seven phenological stages. Using amplicon-based sequencing, followed by diversity, phylogenetic, differential abundance, and network analyses, we examined changes in bacterial and fungal communities. Host phenological stage is the main determinant of microbiome composition, particularly within the foliar bacteriome. Microbial enrichment/depletion patterns suggest that microbial turnover and dispersal were driving these shifts. Moreover, a subset of community shifts were phylogenetically conserved across bacterial clades, suggesting that inherited traits contribute to microbe-microbe and/or plant-microbe interactions during specific phenophases. Plant phenology influences microbial community composition. These findings enhance understanding of microbiome assembly and identify microbes that potentially influence plant development and reproduction. IMPORTANCE Research at the forefront of plant microbiome studies indicates that plant-associated microbes can alter the timing of plant development (phenology). However, it is unclear if host phenological stage affects microbial community assembly. Microbiome studies in annual or deciduous perennial plants can face difficulty in separating effects of tissue age from phenological driven effects on the microbiome. Evergreen perennial plants, like sweet orange, maintain mature leaves for multiple years, allowing for uniform sampling of similarly aged tissue across host reproductive stages. Using this system, multiyear sampling, and high-throughput sequencing, we identified plant phenology as a major driver of microbiome composition, particularly within the leaf-associated bacterial communities. Distinct changes in microbial patterns suggest that microbial turnover and dispersal are mechanisms driving these community shifts. Additionally, closely related bacteria have similar abundance patterns across plant stages, indicating that inherited microbial traits may influence how bacteria respond to host developmental changes. Overall, this study illustrates that plant phenology does indeed govern microbiome seasonal shifts and identifies microbial candidates that may affect plant reproduction and development.


Assuntos
Citrus sinensis , Microbiota , Idoso , Bactérias/genética , Humanos , Filogenia , Plantas
10.
PLoS One ; 17(3): e0265762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316301

RESUMO

Xylella fastidiosa is a multi-continental, lethal, plant pathogenic bacterium that is transmitted by sharpshooter leafhoppers (Insecta: Hemiptera: Cicadellidae: Cicadellinae) and adult spittlebugs (Hemiptera: Aphrophoridae). The bacterium forms biofilms in plant xylem and the functional foregut of the insect. These biofilms serve as sources of inoculum for insect acquisition and subsequent inoculation to a healthy plant. In this study, 3D fluid dynamic simulations were performed for bidirectional cibarial propulsion of xylem sap through tube-like grapevine xylem and an anatomically accurate model of the functional foregut of the blue-green sharpshooter, Graphocephala atropunctata. The analysis supports a model of how fluid dynamics influence X. fastidiosa transmission. The model supports the hypothesis that X. fastidiosa inoculation is mostly driven by detachment of bacteria from the foregut due to high-velocity flow during egestion (outward fluid flow from the stylets). Acquisition occurs by fluid dynamics during both egestion and ingestion (fluid uptake through the stylets and swallowing). These simulation results are supported by previously reported X. fastidiosa colonization patterns in the functional foregut and sharpshooter stylet probing behaviors. The model indicates that xylem vessel diameter influences drag forces imposed on xylem wall-adherent bacteria; thus, vessel diameter may be an important component of the complex transmission process. Results from this study are directly applicable to development of novel grapevine resistance traits via electropenetrographic monitoring of vector acquisition and inoculation behaviors.


Assuntos
Hemípteros , Vitis , Xylella , Animais , Hemípteros/microbiologia , Hidrodinâmica , Insetos Vetores/microbiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xilema
11.
Microbiology (Reading) ; 167(10)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34596503

RESUMO

Xylella fastidiosa is a vector-borne plant vascular pathogen that has caused devastating disease outbreaks in diverse agricultural crops worldwide. A major global quarantine pathogen, X. fastidiosa can infect hundreds of plant species and can be transmitted by many different xylem sap-feeding insects. Several decades of research have revealed a complex lifestyle dependent on adaptation to the xylem and insect environments and interactions with host plant tissues.


Assuntos
Produtos Agrícolas/microbiologia , Endófitos/patogenicidade , Doenças das Plantas/microbiologia , Xylella/patogenicidade , Animais , Endófitos/classificação , Endófitos/fisiologia , Genoma Bacteriano , Insetos Vetores/microbiologia , Filogenia , Xylella/classificação , Xylella/fisiologia , Xilema/microbiologia
13.
Sci Rep ; 11(1): 6536, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33753809

RESUMO

Sharpshooter leafhoppers (Hemiptera: Cicadellidae: Cicadellinae) are important vectors of the plant pathogenic bacterium Xylella fastidiosa Wells et al. (Xanthomonadales: Xanthomonadaceae). This pathogen causes economically significant diseases in olive, citrus, and grapes on multiple continents. Bacterial acquisition and inoculation mechanisms are linked to X. fastidiosa biofilm formation and fluid dynamics in the functional foregut of sharpshooters, which together result in egestion (expulsion) of fluids likely carrying bacteria. One key X. fastidiosa vector is the blue-green sharpshooter, Graphocephala atropunctata (Signoret, 1854). Herein, a 3D model of the blue-green sharpshooter functional foregut is derived from a meta-analysis of published microscopy images. The model is used to illustrate preexisting and newly defined anatomical terminology that is relevant for investigating fluid dynamics in the functional foregut of sharpshooters. The vivid 3D illustrations herein and supplementary interactive 3D figures are suitable resources for multidisciplinary researchers who may be unfamiliar with insect anatomy. The 3D model can also be used in future fluid dynamic simulations to better understand acquisition, retention, and inoculation of X. fastidiosa. Improved understanding of these processes could lead to new targets for preventing diseases caused by X. fastidiosa.


Assuntos
Sistema Digestório/ultraestrutura , Hemípteros/ultraestrutura , Insetos Vetores/ultraestrutura , Doenças das Plantas/microbiologia , Animais , Citrus/microbiologia , Sistema Digestório/anatomia & histologia , Hemípteros/anatomia & histologia , Hemípteros/microbiologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/microbiologia , Olea/microbiologia , Vitis/microbiologia , Xylella/patogenicidade
14.
Tech Coloproctol ; 25(3): 339-342, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33423162

RESUMO

Removal of rectosigmoid retained foreign bodies (RFB) may require laparoscopy and often laparotomy. Proctoscopic extraction from the distal sigmoid colon and proximal rectum can be technically difficult. Using a transanal minimally invasive surgery (TAMIS) approach, RFBs can be safely removed, avoiding an abdominal operation with associated morbidity. Patients without clinical findings concerning for acute colonic perforation undergo bedside digital rectal examination and proctoscopic attempt at removal of RFB. If unsuccessful, patients undergo rectal examination under anesthesia with proctoscopy and attempted RFB removal. If the RFB cannot be easily removed, a TAMIS port is inserted into the anal canal and pneumorectum is established. A laparoscopic camera and instruments are then used to facilitate removal of the RFB. To date, TAMIS was successful in all 10 patients with RFB requiring an operation. All patients tolerated the procedure well and were discharged to home from the postoperative recovery room. Unfortunately, none of the patients presented for follow-up visits, but there were no known complications. This technique can be considered prior to laparotomy for patients with RFBs after failed digital examination with proctoscopy.


Assuntos
Corpos Estranhos , Laparoscopia , Neoplasias Retais , Cirurgia Endoscópica Transanal , Canal Anal/cirurgia , Corpos Estranhos/cirurgia , Humanos , Procedimentos Cirúrgicos Minimamente Invasivos , Neoplasias Retais/cirurgia , Reto/cirurgia
15.
Mol Plant Pathol ; 22(2): 175-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33216451

RESUMO

Pierce's disease (PD) in grapevine (Vitis vinifera) is caused by the bacterial pathogen Xylella fastidiosa. X. fastidiosa is limited to the xylem tissue and following infection induces extensive plant-derived xylem blockages, primarily in the form of tyloses. Tylose-mediated vessel occlusions are a hallmark of PD, particularly in susceptible V. vinifera. We temporally monitored tylose development over the course of the disease to link symptom severity to the level of tylose occlusion and the presence/absence of the bacterial pathogen at fine-scale resolution. The majority of vessels containing tyloses were devoid of bacterial cells, indicating that direct, localized perception of X. fastidiosa was not a primary cause of tylose formation. In addition, we used X-ray computed microtomography and machine-learning to determine that X. fastidiosa induces significant starch depletion in xylem ray parenchyma cells. This suggests that a signalling mechanism emanating from the vessels colonized by bacteria enables a systemic response to X. fastidiosa infection. To understand the transcriptional changes underlying these phenotypes, we integrated global transcriptomics into the phenotypes we tracked over the disease spectrum. Differential gene expression analysis revealed that considerable transcriptomic reprogramming occurred during early PD before symptom appearance. Specifically, we determined that many genes associated with tylose formation (ethylene signalling and cell wall biogenesis) and drought stress were up-regulated during both Phase I and Phase II of PD. On the contrary, several genes related to photosynthesis and carbon fixation were down-regulated during both phases. These responses correlate with significant starch depletion observed in ray cells and tylose synthesis in vessels.


Assuntos
Celulose/análogos & derivados , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Xilema/metabolismo , Celulose/biossíntese , Regulação da Expressão Gênica de Plantas , Amido/metabolismo , Transcrição Gênica , Transcriptoma , Regulação para Cima , Vitis/metabolismo , Xilema/microbiologia
16.
J Nat Prod ; 83(6): 1810-1816, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32510948

RESUMO

Pierce's disease of grapevine and citrus huanglongbing are caused by the bacterial pathogens Xylella fastidiosa and Candidatus Liberibacter asiaticus (CLas), respectively. Both pathogens reside within the plant vascular system, occluding water and nutrient transport, leading to a decrease in productivity and fruit marketability and ultimately death of their hosts. Field observations of apparently healthy plants in disease-affected vineyards and groves led to the hypothesis that natural products from endophytes may inhibit these bacterial pathogens. Previously, we showed that the natural product radicinin from Cochliobolus sp. inhibits X. fastidiosa. Herein we describe a chemical synthesis of deoxyradicinin and establish it as an inhibitor of both X. fastidiosa and Liberibacter crescens, a culturable surrogate for CLas. The key to this three-step route is a zinc-mediated enolate C-acylation, which allows for direct introduction of the propenyl side chain without extraneous redox manipulations.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Liberibacter/efeitos dos fármacos , Pironas/síntese química , Pironas/farmacologia , Xylella/efeitos dos fármacos , Acetilação , Citrus , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxirredução , Doenças das Plantas/microbiologia , Pironas/química , Solubilidade , Vitis
17.
Appl Environ Microbiol ; 86(8)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32086307

RESUMO

Huanglongbing (HLB) is a destructive citrus disease that is lethal to all commercial citrus plants, making it the most serious citrus disease and one of the most serious plant diseases. Because of the severity of HLB and the paucity of effective control measures, we structured this study to encompass the entirety of the citrus microbiome and the chemistries associated with that microbial community. We describe the spatial niche diversity of bacteria and fungi associated with citrus roots, stems, and leaves using traditional microbial culturing integrated with culture-independent methods. Using the culturable sector of the citrus microbiome, we created a microbial repository using a high-throughput bulk culturing and microbial identification pipeline. We integrated an in vitro agar diffusion inhibition bioassay into our culturing pipeline that queried the repository for antimicrobial activity against Liberibacter crescens, a culturable surrogate for the nonculturable "Candidatus Liberibacter asiaticus" bacterium associated with HLB. We identified microbes with robust inhibitory activity against L. crescens that include the fungi Cladosporium cladosporioides and Epicoccum nigrum and bacterial species of Pantoea, Bacillus, and Curtobacterium Purified bioactive natural products with anti-"Ca. Liberibacter asiaticus" activity were identified from the fungus C. cladosporioides Bioassay-guided fractionation of an organic extract of C. cladosporioides yielded the natural products cladosporols A, C, and D as the active agents against L. crescens This work serves as a foundation for unraveling the complex chemistries associated with the citrus microbiome to begin to understand the functional roles of members of the microbiome, with the long-term goal of developing anti-"Ca Liberibacter asiaticus" bioinoculants that thrive in the citrus holosystem.IMPORTANCE Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens, a culturable surrogate for the unculturable HLB-associated bacterium "Candidatus Liberibacter asiaticus," we tested the hypothesis that members of the citrus microbiome produce potential anti-"Ca Liberibacter asiaticus" natural products with potential anti-"Ca Liberibacter asiaticus" activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens.


Assuntos
Citrus/microbiologia , Microbiota , Doenças das Plantas/microbiologia , Rhizobiaceae/isolamento & purificação , Rhizobiaceae/fisiologia , Microbiologia do Solo , Fenômenos Fisiológicos Bacterianos , Fungos/fisiologia
18.
Mol Plant Microbe Interact ; 32(10): 1402-1414, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31216219

RESUMO

Xylella fastidiosa is a gram-negative bacterium that causes Pierce's disease (PD) in grapevine. X. fastidiosa is xylem-limited and interfaces primarily with pit membranes (PMs) that separate xylem vessels from one another and from adjacent xylem parenchyma cells. PMs are composed of both pectic and cellulosic substrates, and dissolution of PMs is facilitated by X. fastidiosa cell wall-degrading enzymes. A polygalacturonase, which hydrolyzes the pectin component of PMs, is required for both movement and pathogenicity in grapevines. Here, we demonstrate that two X. fastidiosa ß-1,4-endoglucanases (EGases), EngXCA1 and EngXCA2, also play a role in how X. fastidiosa interfaces with grapevine PMs. The loss of EngXCA1 and EngXCA2 in tandem reduces both X. fastidiosa virulence and population size and slows the rate of PD symptom development and progression. Moreover, we demonstrate that single and double EGases mutants alter the rate of PD progression differently in two grapevine cultivars, Cabernet Sauvignon and Chardonnay, and that Chardonnay is significantly more susceptible to PD than Cabernet Sauvignon. Interestingly, we determined that there are quantitative differences in the amount of fucosylated xyloglucans that make up the surface of PMs in these cultivars. Fucosylated xyloglucans are targets of the X. fastidiosa EGases, and xyloglucan abundance could impact PM dissolution and affect PD symptom development. Taken together, these results indicate that X. fastidiosa EGases and the PM carbohydrate composition of different grape cultivars are important factors that influence PD symptom development and progression.


Assuntos
Celulase , Vitis , Xylella , Celulase/metabolismo , Doenças das Plantas/microbiologia , Especificidade da Espécie , Vitis/classificação , Vitis/microbiologia , Xylella/enzimologia
19.
Nat Commun ; 9(1): 4894, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30459421

RESUMO

Citrus is a globally important, perennial fruit crop whose rhizosphere microbiome is thought to play an important role in promoting citrus growth and health. Here, we report a comprehensive analysis of the structural and functional composition of the citrus rhizosphere microbiome. We use both amplicon and deep shotgun metagenomic sequencing of bulk soil and rhizosphere samples collected across distinct biogeographical regions from six continents. Predominant taxa include Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes. The core citrus rhizosphere microbiome comprises Pseudomonas, Agrobacterium, Cupriavidus, Bradyrhizobium, Rhizobium, Mesorhizobium, Burkholderia, Cellvibrio, Sphingomonas, Variovorax and Paraburkholderia, some of which are potential plant beneficial microbes. We also identify over-represented microbial functional traits mediating plant-microbe and microbe-microbe interactions, nutrition acquisition and plant growth promotion in citrus rhizosphere. The results provide valuable information to guide microbial isolation and culturing and, potentially, to harness the power of the microbiome to improve plant production and health.


Assuntos
Citrus/microbiologia , Microbiota/genética , Raízes de Plantas/microbiologia , Rizosfera , Microbiologia do Solo , Bactérias/classificação , Bactérias/genética , DNA Espaçador Ribossômico/genética , Fungos/classificação , Fungos/genética , Metagenoma/genética , Metagenômica/classificação , Metagenômica/métodos , Filogenia , RNA Ribossômico 16S/genética
20.
Nat Commun ; 9(1): 390, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374171

RESUMO

Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.


Assuntos
Imunidade Inata/imunologia , Lipopolissacarídeos/imunologia , Antígenos O/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Xylella/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Vitis/genética , Vitis/imunologia , Vitis/microbiologia , Xylella/metabolismo , Xylella/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...