Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(49): 46804-46815, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107938

RESUMO

Here, we explore a catalyst-free single-step growth strategy that results in high-quality self-assembled single-crystal vertical GaN nanowires (NWs) grown on a wide range of common and novel substrates (including GaN, Ga2O3, and monolayer two-dimensional (2D) transition-metal dichalcogenide (TMD)) within the same chamber and thus under identical conditions by pulsed laser deposition. High-resolution transmission electron microscopy and scanning transmission electron microscopy (HR-STEM) and grazing incidence X-ray diffraction measurements confirm the single-crystalline nature of the obtained NWs, whereas advanced optical and cathodoluminescence measurements provide evidence of their high optical quality. Further analyses reveal that the growth is initiated by an in situ polycrystalline layer formed between the NWs and substrates during growth, while as its thickness increases, the growth mode transforms into single-crystalline NW nucleation. HR-STEM and corresponding energy-dispersive X-ray compositional analyses indicate possible growth mechanisms. All samples exhibit strong band edge UV emission (with a negligible defect band) dominated by radiative recombination with a high optical efficiency (∼65%). As all NWs have similar structural and optical qualities irrespective of the substrate used, this strategy will open new horizons for developing III-nitride-based devices.

2.
ACS Appl Mater Interfaces ; 15(9): 12127-12136, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36808944

RESUMO

Solar-blind self-powered UV-C photodetectors suffer from low performance, while heterostructure-based devices require complex fabrication and lack p-type wide band gap semiconductors (WBGSs) operating in the UV-C region (<290 nm). In this work, we mitigate the aforementioned issues by demonstrating a facile fabrication process for a high-responsivity solar-blind self-powered UV-C photodetector based on a p-n WBGS heterojunction structure, operating under ambient conditions. Here, heterojunction structures based on p-type and n-type ultra-wide band gap WBGSs (i.e. both are characterized by energy gap ≥4.5 eV) are demonstrated for the first time; mainly p-type solution-processed manganese oxide quantum dots (MnO QDs) and n-type Sn-doped ß-Ga2O3 microflakes. Highly crystalline p-type MnO QDs are synthesized using cost-effective and facile pulsed femtosecond laser ablation in ethanol (FLAL), while the n-type Ga2O3 microflakes are prepared by exfoliation. The solution-processed QDs are uniformly dropcasted on the exfoliated Sn-doped ß-Ga2O3 microflakes to fabricate a p-n heterojunction photodetector, resulting in excellent solar-blind UV-C photoresponse characteristics (with a cutoff at ∼265 nm) being demonstrated. Further analyses using XPS demonstrate the good band alignment between p-type MnO QDs and n-type ß-Ga2O3 microflakes with a type-II heterojunction. Superior photoresponsivity (922 A/W) is obtained under bias, while the self-powered responsivity is ∼86.9 mA/W. The fabrication strategy adopted in this study will provide a cost-effective means for the development of flexible and highly efficient UV-C devices suitable for energy-saving large-scale fixable applications.

3.
ACS Appl Mater Interfaces ; 13(28): 33335-33344, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34236856

RESUMO

Smart solar-blind UV-C band photodetectors suffer from low responsivity in a self-powered mode. Here, we address this issue by fabricating a novel enhanced solar-blind UV-C photodetector array based on solution-processed n-ZnO quantum dots (QDs) functionalized by p-CuO micro-pyramids. Self-assembled catalyst-free p-CuO micro-pyramid arrays are fabricated on a pre-ablated Si substrate by pulsed laser deposition without a need for a catalyst layer or seeding, while the solution-processed n-ZnO QDs are synthesized by the femtosecond-laser ablation in liquid technique. The photodetector is fabricated by spray-coating ZnO QDs on a CuO micro-pyramid array. The photodetector performance is optimized via a p-n junction structure as both p-ZnO QDs and p-CuO micro-pyramid layers are characterized by wide band gap energies. Two photodetectors (with and without CuO micro-pyramids) are fabricated to show the role of p-CuO in enhancing the device performance. The n-ZnO QD/p-CuO micro-pyramid/Si photodetector is characterized by a superior photo-responsivity of ∼956 mA/W at 244 nm with a faster photoresponse (<80 ms) and 260 nm cut-off compared to ZnO QDs/Si photodetectors, confirming that the p-CuO micro-pyramids enhance the device performance. The self-powered photoresponse with a high photo-responsivity of ∼29 mA/W is demonstrated. These high-responsivity solar-bind UV-C photodetector arrays can be used for a wide range of applications.

4.
Nat Commun ; 12(1): 3995, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183646

RESUMO

Hot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e., the Rashba band splitting effect. Here, we investigated the hot-carrier cooling processes for two slightly different compositions of two-dimensional Dion-Jacobson hybrid perovskites, namely, (3AMP)PbI4 and (4AMP)PbI4 (3AMP = 3-(aminomethyl)piperidinium; 4AMP = 4-(aminomethyl)piperidinium), using a combination of ultrafast transient absorption spectroscopy and first-principles calculations. In (4AMP)PbI4, upon Rashba band splitting, the spin-dependent scattering of hot electrons is responsible for accelerating hot-carrier cooling at longer delays. Importantly, the hot-carrier cooling of (4AMP)PbI4 can be extended by manipulating the spin state of the hot carriers. Our findings suggest a new approach for prolonging hot-carrier cooling in hybrid perovskites, which is conducive to further improving the performance of hot-carrier-based optoelectronic and spintronic devices.

5.
Small ; 16(43): e2004513, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006244

RESUMO

High-energy radiation detectors such as X-ray detectors with low light photoresponse characteristics are used for several applications including, space, medical, and military devices. Here, an indirect bandgap inorganic perovskite-based X-ray detector is reported. The indirect bandgap nature of perovskite materials is revealed through optical characterizations, time-resolved photoluminescence (TRPL), and theoretical simulations, demonstrating that the differences in temperature-dependent carrier lifetime related to CsPbX3 (X = Br, I) perovskite composition are due to the changes in the bandgap structure. TRPL, theoretical analyses, and X-ray radiation measurements reveal that the high response of the UV/visible-blind yellow-phase CsPbI3 under high-energy X-ray exposure is attributed to the nature of the indirect bandgap structure of CsPbX3 . The yellow-phase CsPbI3 -based X-ray detector achieves a relatively high sensitivity of 83.6 µCGyair-1 cm-2 (under 1.7 mGyair s-1 at an electron field of 0.17 V µm-1 used for medical diagnostics) although the active layer is based solely on an ultrathin (≈6.6 µm) CsPbI3 nanocrystal film, exceeding the values obtained for commercial X-ray detectors, and further confirming good material quality. This CsPbX3 X-ray detector is sufficient for cost-effective device miniaturization based on a simple design.

6.
ACS Appl Mater Interfaces ; 12(37): 41649-41658, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32869977

RESUMO

There has been a relentless pursuit of transverse electric (TE)-dominant deep ultraviolet (UV) optoelectronic devices for efficient surface emitters to replace the environmentally unfriendly mercury lamps. To date, the use of the ternary AlGaN alloy inevitably has led to transverse magnetic (TM)-dominant emission, an approach that is facing a roadblock. Here, we take an entirely different approach of utilizing a binary GaN compound semiconductor in conjunction with ultrathin quantum disks (QDisks) embedded in AlN nanowires (NWs). The growth of GaN QDisks is realized on a scalable and low-cost Si substrate using plasma-assisted molecular beam epitaxy as a highly controllable monolayer growth platform. We estimated an internal quantum efficiency of ∼81% in a wavelength regime of ∼260 nm for these nanostructures. Additionally, strain mapping obtained by high-angle annular dark-field scanning transmission electron microscopy is studied in conjunction with the TE and TM modes of the carrier recombination. Moreover, for the first time, we quantify the TE and TM modes of the PL emitted by GaN QDisks for deep-UV emitters. We observed nearly pure TE-polarized photoluminescence emission at a polarization angle of ∼5°. This work proposes highly quantum-confined ultrathin GaN QDisks as a promising candidate for deep-UV vertical emitters.

7.
ACS Appl Mater Interfaces ; 12(30): 34058-34064, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32623885

RESUMO

GaN-based UV light-emitting devices suffer from low efficiency. To mitigate this issue, we hybridized GaN nanowires (NWs) grown on Si substrates by plasma-assisted molecular beam epitaxy with solution-processed p-type MnO quantum dots (QDs) characterized by a wider band gap (∼5 eV) than that of GaN. Further investigations reveal that the photoluminescence intensity of the GaN NWs increases up to ∼3.9-fold (∼290%) after functionalizing them with p-MnO QDs, while the internal quantum efficiency is improved by ∼1.7-fold. Electron energy loss spectroscopy (EELS) incorporated into transmission electron microscopy reveals an increase in the density of states in QD-decorated NWs compared to the bare ones. The advanced optical and EELS analyses indicate that the energy transfer from the wider band gap p-MnO QDs to n-GaN NW can lead to substantial emission enhancement and greater radiative recombination contribution because of the good band alignment between MnO QDs and GaN NWs. This work provides valuable insights into an environmentally friendly strategy for improving UV device performance.

8.
ACS Omega ; 5(2): 1261-1269, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984284

RESUMO

The electronic and magnetic properties of oxygen- and sulfur-passivated one-dimensional armchair GaN nanoribbons (A-GaNNRs) are revealed using both first-principles density-functional theory and ab initio molecular dynamics simulations. We explore that an applied external electric field can further modulate the electronic properties of both pristine and passivated A-GaNNRs, thus changing their properties (semiconducting-metallic-half-metallic). A-GaNNRs of 0.9-3.1 nm width are subjected to further investigations, which reveal that sulfur termination transforms pristine A-GaNNRs from direct into indirect band gap semiconductors, without affecting their nonmagnetic nature. On the other hand, oxygen passivation introduces spin-polarized behavior with a finite magnetic moment. Magnetism characteristics in both bare and sulfur-passivated A-GaNNRs are induced by applying a critical electric field along the direction of NR width. The passivated A-GaNNRs are more stable compared to bare ones, while sulfur-passivated A-GaNNRs exhibit higher stability at higher temperatures (>500 °C). Thus, our results suggest that A-GaNNRs can be used in a broad range of electronic, optoelectronic, and spintronic applications.

9.
ACS Nano ; 14(2): 2202-2211, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-31986010

RESUMO

Growing III-nitride nanowires on 2D materials is advantageous, as it effectively decouples the underlying growth substrate from the properties of the nanowires. As a relatively new family of 2D materials, MXenes are promising candidates as III-nitride nanowire nucleation layers capable of providing simultaneous transparency and conductivity. In this work, we demonstrate the direct epitaxial growth of GaN nanowires on Ti3C2 MXene films. The MXene films consist of nanoflakes spray coated onto an amorphous silica substrate. We observed an epitaxial relationship between the GaN nanowires and the MXene nanoflakes due to the compatibility between the triangular lattice of Ti3C2 MXene and the hexagonal structure of wurtzite GaN. The GaN nanowires on MXene show good material quality and partial transparency at visible wavelengths. Nanoscale electrical characterization using conductive atomic force microscopy reveals a Schottky barrier height of ∼330 meV between the GaN nanowire and the Ti3C2 MXene film. Our work highlights the potential of using MXene as a transparent and conductive preorienting nucleation layer for high-quality GaN growth on amorphous substrates.

10.
RSC Adv ; 10(10): 6092-6097, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497423

RESUMO

Organometal halide perovskite photodetectors have recently drawn significant attention due to their excellent potential to perform as broadband photodetectors. However, the photoresponse in the ultraviolet (UV) spectrum can be improved by introducing wide bandgap semiconductors. In this work, we report on a methylammonium lead iodide/p-type gallium nitride (MAPI/p-GaN) heterojunction photodetector. We demonstrate that the device is capable of detecting in the UV region by p-GaN being hybridized with MAPI. We further investigate different symmetric and asymmetric metal-electrode contacts to enhance the device performance including the response time. The asymmetric electrode configuration is found to be the most optimal configuration which results in high photoresponse (photo-responsivity is 55 mA W-1 and fall time < 80 ms). As the light illumination occurs through the GaN side, its presence ultimately reduces MAPI degradation due to efficient absorption of the UV photons by GaN film.

11.
Opt Express ; 27(21): 30450-30461, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31684293

RESUMO

Underwater wireless optical communication (UWOC) can offer reliable and secure connectivity for enabling future internet-of-underwater-things (IoUT), owing to its unlicensed spectrum and high transmission speed. However, a critical bottleneck lies in the strict requirement of pointing, acquisition, and tracking (PAT), for effective recovery of modulated optical signals at the receiver end. A large-area, high bandwidth, and wide-angle-of-view photoreceiver is therefore crucial for establishing a high-speed yet reliable communication link under non-directional pointing in a turbulent underwater environment. In this work, we demonstrated a large-area, of up to a few tens of cm2, photoreceiver design based on ultraviolet(UV)-to-blue color-converting plastic scintillating fibers, and yet offering high 3-dB bandwidth of up to 86.13 MHz. Tapping on the large modulation bandwidth, we demonstrated a high data rate of 250 Mbps at bit-error ratio (BER) of 2.2 × 10-3 using non-return-to-zero on-off keying (NRZ-OOK) pseudorandom binary sequence (PRBS) 210-1 data stream, a 375-nm laser-based communication link over the 1.15-m water channel. This proof-of-concept demonstration opens the pathway for revolutionizing the photodetection scheme in UWOC, and for non-line-of-sight (NLOS) free-space optical communication.

12.
ACS Appl Mater Interfaces ; 11(42): 38921-38928, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31496212

RESUMO

Solution-processed deep ultraviolet (DUV) photodetectors based on wide band gap oxide semiconductors (WBGS) working in the <280 nm wavelength range are drawing increasing attention of the research community because of their cost-effective production and potential use in diverse applications. Here, we report on the synthesis of novel core-shell amorphous gallium oxide nanoparticles (NPs) (a-Ga2Ox/GaOx NPs) that have not been previously obtained. The amorphous gallium oxide NPs were synthesized from gallium nitride using the femtosecond laser ablation in liquid technique. Transmission electron microscopy and electron energy-loss spectroscopy measurements revealed the amorphous NP nature with a Ga-rich core and oxide-rich shell. Optical properties of these core-shell amorphous gallium oxide NPs were investigated by time-resolved spectroscopy and photoluminescence. As a proof of concept, the amorphous gallium oxide NPs were used as an active layer in a solar-blind DUV photodetector with high responsivity (778 mA/W) at 244 nm, which is the highest responsivity recorded to date for any solution-processed DUV photodetector. This work on a high-performance solution-processed device paves the way for large-scale industrial application of the WBGS.

13.
ACS Appl Mater Interfaces ; 11(31): 27989-27996, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31343859

RESUMO

One-dimensional (1D) structures-based UV-light-emitting diode (LED) has immense potential for next-generation applications. However, several issues related to such devices must be resolved first, such as expensive material and growth methods, complicated fabrication process, efficiency droop, and unavoidable metal contamination due to metal catalyst that reduces device efficiency. To overcome these obstacles, we have developed a novel growth method for obtaining a high-quality hexagonal, well-defined, and vertical 1D Gd-doped n-ZnO nanotube (NT) array deposited on p-GaN films and other substrates by pulsed laser deposition. By adopting this approach, the desired high optical and structural quality is achieved without utilizing metal catalyst. Transmission electron microscopy measurements confirm that gadolinium dopants in the target form a transparent in situ interface layer to assist in vertical NT formation. Microphotoluminescence (PL) measurements of the NTs reveal an intense ZnO band edge emission without a defect band, indicating high quality. Carrier dynamic analysis via time-resolved PL confirms that the emission of n-ZnO NTs/p-GaN LED structure is dominated significantly by the radiative recombination process without efficiency droop when high carrier density is injected optically. We developed an electrically pumped UV Gd-doped ZnO NTs/GaN LED as a proof of concept, demonstrating its high internal quantum efficiency (>65%). The demonstrated performance of this cost-effective UV LED suggests its potential application in large-scale device production.

14.
ACS Appl Mater Interfaces ; 11(5): 5223-5231, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30620549

RESUMO

All-inorganic lead halide perovskites are promising materials for many optoelectronic applications. However, two issues that arise during device fabrication hinder their practical use, namely, inadequate continuity of coated inorganic perovskite films across large areas and inability to integrate these films with traditional photolithography due to poor adhesion to wafers. Herein, for the first time, to address these issues, we show a room-temperature synthesis process employed to produce CsPbBr3 perovskite nanocrystals with two-dimensional (2D) nanosheet features. Due to the unique properties of these 2D nanocrystals, including the "self-assembly" characteristic, the "double solvent evaporation inducing self-patterning" strategy is used to generate high-quality patterned thin films in selected areas automatically after drop-casting, enabling fabrication of high-performance devices without using complex and expensive fabrication processing techniques. The films are free from microcracks. In a proof-of-concept experiment, photodetector arrays are used to demonstrate the superior properties of such films. We provide evidence of both high responsivity (9.04 A/W) and high stability across large areas. The photodetectors fabricated on a flexible substrate exhibit outstanding photoresponse stability. Advanced optical and structural studies reveal the possible mechanism. Our simple and cost-effective method paves the way for the next-generation nanotechnology based on high-performance, cost-effective optoelectronic devices.

15.
RSC Adv ; 9(61): 35917-35923, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35528084

RESUMO

The peculiar magnetic properties of rare earth nitrides (RENs) make them suitable for a wide range of applications. Here, we report on a density functional theory (DFT) study of an interesting member of the family, two-dimensional (2D) NdN film, using the generalized gradient approximation (GGA), including the Hubbard (U) parameter. We consider different film thicknesses, taking into account the effects of N vacancies (V N) and dopants (C and O). Formation energy values show that, even though N vacancy is the predominant defect, C and O dopants are also probable impurities in these films. Individual Nd and N magnetic moments oscillate in the presence of V N and dopants owing to the induced lattice distortions. The density of states calculations show that the 2D NdN film has a semi-metallic nature, while the f orbitals are separated into fully filled and empty bands. A magnetic anisotropy energy of ∼50 µeV is obtained, and the easy axis aligns along the film orientation as the film thickness increases, revealing that such films are ideal candidates for spintronic applications.

16.
RSC Adv ; 9(5): 2380, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35532472

RESUMO

[This corrects the article DOI: 10.1039/C8RA00985F.].

17.
RSC Adv ; 8(25): 13850-13856, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35539352

RESUMO

The structural stability and magnetic properties of a grain boundary (GB) formed by aligning two ZnO single crystals oriented at an angle of 45° is investigated by density functional theory, using generalized gradient approximation (GGA) and taking the U parameter into consideration for the 4f impurity states. We found that the GB is stable with no dangling bonds and inter-granular structures. The stability of defects such as Gd substituted to the Zn site (GdZn), Zn vacancy (VZn) and O vacancy (VO) as well as defect complexes GdZn-GdZn, GdZn-VZn, and GdZn-VO are analyzed using formation energy calculations. It is found that GdZn-GdZn clusters prefers to form at the GB. The spin polarization at the GdZn sites is too localized and the exchange coupling energy is insufficient to overcome the thermal fluctuations. However, we show that the presence of VZn increases the hybridization between p orbitals of O as well as d orbitals of Zn, which can assist in increasing the magnetic polarization of the system. This work advances the understanding of the ferromagnetism in Gd-doped ZnO, indicating that Gd clustering at the GB is not likely to contribute to the ferromagnetism.

18.
Small ; 14(5)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29205838

RESUMO

2D molybdenum disulfide (MoS2 ) possesses excellent optoelectronic properties that make it a promising candidate for use in high-performance photodetectors. Yet, to meet the growing demand for practical and reliable MoS2 photodetectors, the critical issue of defect introduction to the interface between the exfoliated MoS2 and the electrode metal during fabrication must be addressed, because defects deteriorate the device performance. To achieve this objective, the use of an atomic layer-deposited TiO2 interlayer (between exfoliated MoS2 and electrode) is reported in this work, for the first time, to enhance the performance of MoS2 photodetectors. The TiO2 interlayer is inserted through 20 atomic layer deposition cycles before depositing the electrode metal on MoS2 /SiO2 substrate, leading to significantly enhanced photoresponsivity and response speed. These results pave the way for practical applications and provide a novel direction for optimizing the interlayer material.

19.
ACS Appl Mater Interfaces ; 9(42): 37120-37127, 2017 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-28925680

RESUMO

Enhanced ultraviolet (UV) photodetectors (PDs) with high responsivity comparable to that of visible and infrared photodetectors are needed for commercial applications. n-Type ZnO nanotubes (NTs) with high-quality optical, structural, and electrical properties on a p-type Si(100) substrate are successfully fabricated by pulsed laser deposition (PLD) to produce a UV PD with high responsivity, for the first time. We measure the current-voltage characteristics of the device under dark and illuminated conditions and demonstrated the high stability and responsivity (that reaches ∼101.2 A W-1) of the fabricated UV PD. Time-resolved spectroscopy is employed to identify exciton confinement, indicating that the high PD performance is due to optical confinement, the high surface-to-volume ratio, the high structural quality of the NTs, and the high photoinduced carrier density. The superior detectivity and responsivity of our NT-based PD clearly demonstrate that fabrication of high-performance UV detection devices for commercial applications is possible.

20.
ACS Appl Mater Interfaces ; 9(39): 34057-34063, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28892352

RESUMO

We demonstrate a state-of-the-art high-efficiency GaN-based vertical light-emitting diode (VLED) grown on a transparent and conductive (-201)-oriented (ß-Ga2O3) substrate, obtained using a straightforward growth process that does not require a high-cost lift-off technique or complex fabrication process. The high-resolution scanning transmission electron microscopy (STEM) images confirm that we produced high quality upper layers, including a multiquantum well (MQW) grown on the masked ß-Ga2O3 substrate. STEM imaging also shows a well-defined MQW without InN diffusion into the barrier. Electroluminescence (EL) measurements at room temperature indicate that we achieved a very high internal quantum efficiency (IQE) of 78%; at lower temperatures, IQE reaches ∼86%. The photoluminescence (PL) and time-resolved PL analysis indicate that, at a high carrier injection density, the emission is dominated by radiative recombination with a negligible Auger effect; no quantum-confined Stark effect is observed. At low temperatures, no efficiency droop is observed at a high carrier injection density, indicating the superior VLED structure obtained without lift-off processing, which is cost-effective for large-scale devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...