Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 97(4): e0024823, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-36943070

RESUMO

Most of studied bacteriophages (phages) are terrestrial viruses. However, marine phages are shown to be highly involved in all levels of oceanic regulation. They are, however, still largely overlooked by the scientific community. By inducing cell lysis on half of the bacterial population daily, their role and influence on the bacterial biomass and evolution, as well as their impact in the global biogeochemical cycles, is undeniable. Cobetia marina virus 1 (Carin-1) is a member of the Podoviridae family infecting the γ-protoabacteria C. marina. Here, we present the almost complete, nearly-atomic resolution structure of Carin-1 comprising capsid, portal, and tail machineries at 3.5 Å, 3.8 Å and 3.9 Å, respectively, determined by cryo-electron microscopy (cryo-EM). Our experimental results, combined with AlphaFold2 (AF), allowed us to obtain the nearly-atomic structure of Carin-1 by fitting and refining the AF atomic models in the high resolution cryo-EM map, skipping the bottleneck of de-novo manual building and speeding up the structure determination process. Our structural results highlighted the T7-like nature of Carin1, as well as several novel structural features like the presence of short spikes on the capsid, reminiscent those described for Rhodobacter capsulatus gene transfer agent (RcGTA). This is, to our knowledge, the first time such assembly is described for a bacteriophage, shedding light into the common evolution and shared mechanisms between gene transfer agents and phages. This first full structure determined for a marine podophage allowed to propose an infection mechanism different than the one proposed for the archetypal podophage T7. IMPORTANCE Oceans play a central role in the carbon cycle on Earth and on the climate regulation (half of the planet's CO2 is absorbed by phytoplankton photosynthesis in the oceans and just as much O2 is liberated). The understanding of the biochemical equilibriums of marine biology represents a major goal for our future. By lysing half of the bacterial population every day, marine bacteriophages are key actors of these equilibriums. Despite their importance, these marine phages have, so far, only been studied a little and, in particular, structural insights are currently lacking, even though they are fundamental for the understanding of the molecular mechanisms of their mode of infection. The structures described in our manuscript allow us to propose an infection mechanism that differs from the one proposed for the terrestrial T7 virus, and might also allow us to, in the future, better understand the way bacteriophages shape the global ecosystem.


Assuntos
Bacteriófagos , Podoviridae , Bacteriófagos/classificação , Bacteriófagos/ultraestrutura , Microscopia Crioeletrônica , Podoviridae/ultraestrutura , Capsídeo/ultraestrutura , Proteínas da Cauda Viral/ultraestrutura , Halomonadaceae/virologia
2.
Protein Sci ; 32(1): e4540, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36502283

RESUMO

Haloacid dehalogenases are potentially involved in bioremediation of contaminated environments and few have been biochemically characterized from marine organisms. The l-2-haloacid dehalogenase (l-2-HAD) from the marine Bacteroidetes Zobellia galactanivorans DsijT (ZgHAD) has been shown to catalyze the dehalogenation of C2 and C3 short-chain l-2-haloalkanoic acids. To better understand its catalytic properties, its enzymatic stability, active site, and 3D structure were analyzed. ZgHAD demonstrates high stability to solvents and a conserved catalytic activity when heated up to 60°C, its melting temperature being at 65°C. The X-ray structure of the recombinant enzyme was solved by molecular replacement. The enzyme folds as a homodimer and its active site is very similar to DehRhb, the other known l-2-HAD from a marine Rhodobacteraceae. Marked differences are present in the putative substrate entrance sites of the two enzymes. The H179 amino acid potentially involved in the activation of a catalytic water molecule was confirmed as catalytic amino acid through the production of two inactive site-directed mutants. The crystal packing of 13 dimers in the asymmetric unit of an active-site mutant, ZgHAD-H179N, reveals domain movements of the monomeric subunits relative to each other. The involvement of a catalytic His/Glu dyad and substrate binding amino acids was further confirmed by computational docking. All together our results give new insights into the catalytic mechanism of the group of marine l-2-HAD.


Assuntos
Flavobacterium , Hidrolases , Flavobacterium/genética , Flavobacterium/metabolismo , Raios X , Hidrolases/química , Aminoácidos , Especificidade por Substrato
3.
Sci Rep ; 11(1): 19523, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593864

RESUMO

Fucoidans are sulfated, fucose-rich marine polysaccharides primarily found in cell walls of brown seaweeds (macroalgae). Fucoidans are known to possess beneficial bioactivities depending on their structure and sulfation degree. Here, we report the first functional characterization and the first crystal structure of a prokaryotic sulfatase, PsFucS1, belonging to sulfatase subfamily S1_13, able to release sulfate from fucoidan oligosaccharides. PsFucS1 was identified in the genome of a Pseudoalteromonas sp. isolated from sea cucumber gut. PsFucS1 (57 kDa) is Ca2+ dependent and has an unusually high optimal temperature (68 °C) and thermostability. Further, the PsFucS1 displays a unique quaternary hexameric structure comprising a tight trimeric dimer complex. The structural data imply that this hexamer formation results from an uncommon interaction of each PsFucS1 monomer that is oriented perpendicular to the common dimer interface (~ 1500 Å2) that can be found in analogous sulfatases. The uncommon interaction involves interfacing (1246 Å2) through a bundle of α-helices in the N-terminal domain to form a trimeric ring structure. The high thermostability may be related to this unusual quaternary hexameric structure formation that is suggested to represent a novel protein thermostabilization mechanism.


Assuntos
Modelos Moleculares , Polissacarídeos/metabolismo , Células Procarióticas/enzimologia , Conformação Proteica , Sulfatases/química , Sulfatases/metabolismo , Animais , Domínio Catalítico , Ativação Enzimática , Estabilidade Enzimática , Microbioma Gastrointestinal , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Polissacarídeos/química , Pepinos-do-Mar/microbiologia , Sulfatases/genética
4.
J Biol Chem ; 297(4): 101129, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34478709

RESUMO

Chitin deacetylases (CDAs) are found in many different organisms ranging from marine bacteria to fungi and insects. These enzymes catalyze the removal of acetyl groups from chitinous substrates generating various chitosans, linear copolymers consisting of N-acetylglucosamine (GlcNAc) and glucosamine. CDAs influence the degree of acetylation of chitosans as well as their pattern of acetylation, a parameter that was recently shown to influence the physicochemical properties and biological activities of chitosans. The binding site of CDAs typically consists of around four subsites, each accommodating a single sugar unit of the substrate. It has been hypothesized that the subsite preferences for GlcNAc or glucosamine units play a crucial role in the acetylation pattern they generate, but so far, this characteristic was largely ignored and still lacks structural data on the involved residues. Here, we determined the crystal structure of an Aspergillus niger CDA. Then, we used molecular dynamics simulations, backed up with a variety of in vitro activity assays using different well-defined polymeric and oligomeric substrates, to study this CDA in detail. We found that Aspergillus niger CDA strongly prefers a GlcNAc sugar unit at its -1 subsite and shows a weak GlcNAc preference at the other noncatalytic subsites, which was apparent both when deacetylating and N-acetylating oligomeric substrates. Overall, our results show that the combination of in vitro and in silico methods used here enables the detailed analysis of CDAs, including their subsite preferences, which could influence their substrate targets and the characteristics of chitosans produced by these species.


Assuntos
Amidoidrolases/química , Aspergillus niger/enzimologia , Simulação por Computador , Proteínas Fúngicas/química , Acetilglucosamina/química , Amidoidrolases/metabolismo , Cristalografia por Raios X , Domínios Proteicos , Especificidade por Substrato
5.
Antioxidants (Basel) ; 10(5)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069657

RESUMO

Glutaredoxins (GRXs) are thioredoxin superfamily members exhibiting thiol-disulfide oxidoreductase activity and/or iron-sulfur (Fe-S) cluster binding capacities. These properties are determined by specific structural factors. In this study, we examined the capacity of the class I Chlamydomonas reinhardtii GRX2 recombinant protein to catalyze both protein glutathionylation and deglutathionylation reactions using a redox sensitive fluorescent protein as a model protein substrate. We observed that the catalytic cysteine of the CPYC active site motif of GRX2 was sufficient for catalyzing both reactions in the presence of glutathione. Unexpectedly, spectroscopic characterization of the protein purified under anaerobiosis showed the presence of a [2Fe-2S] cluster despite having a presumably inadequate active site signature, based on past mutational analyses. The spectroscopic characterization of cysteine mutated variants together with modeling of the Fe-S cluster-bound GRX homodimer from the structure of an apo-GRX2 indicate the existence of an atypical Fe-S cluster environment and ligation mode. Overall, the results further delineate the biochemical and structural properties of conventional GRXs, pointing to the existence of multiple factors more complex than anticipated, sustaining the capacity of these proteins to bind Fe-S clusters.

6.
Glycobiology ; 31(10): 1364-1377, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34184062

RESUMO

Alginate is a major compound of brown macroalgae and as such an important carbon and energy source for heterotrophic marine bacteria. Despite the rather simple composition of alginate only comprising mannuronate and guluronate units, these bacteria feature complex alginolytic systems that can contain up to seven alginate lyases. This reflects the necessity of large enzyme systems for the complete degradation of the abundant substrate. Numerous alginate lyases have been characterized. They belong to different polysaccharide lyase (PL) families, but only one crystal structure of a family 17 (PL17) alginate lyase has been reported to date, namely Alg17c from the gammaproteobacterium Saccharophagus degradans. Biochemical and structural characterizations are helpful to link sequence profiles to function, evolution of functions and niche-specific characteristics. Here, we combined detailed biochemical and crystallographic analysis of AlyA3, a PL17 alginate lyase from the marine flavobacteria Zobellia galactanivorans DsijT, providing the first structure of a PL17 in the Bacteroidetes phylum. AlyA3 is exo-lytic and highly specific of mannuronate stretches. As part of an "alginate utilizing locus", its activity is complementary to that of other characterized alginate lyases from the same bacterium. Structural comparison with Alg17c highlights a common mode of action for exo-lytic cleavage of the substrate, strengthening our understanding of the PL17 catalytic mechanism. We show that unlike Alg17c, AlyA3 contains an inserted flexible loop at the entrance to the catalytic groove, likely involved in substrate recognition, processivity and turn over.


Assuntos
Flavobacteriaceae/enzimologia , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Biocatálise , Polissacarídeo-Liases/genética , Conformação Proteica
7.
Biosci Rep ; 40(10)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-32970113

RESUMO

Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe-2S] cluster into heterodimers. A role in the maturation of iron-sulfur (Fe-S) proteins is also attributed to both proteins. In the present study, we have performed a structure-function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe-S cluster binding in BolA-Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Metais/metabolismo , Sinorhizobium meliloti/metabolismo , Sequência de Aminoácidos/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dicroísmo Circular , Sequência Conservada/genética , Histidina/genética , Histidina/metabolismo , Medicago truncatula/microbiologia , Sinorhizobium meliloti/genética , Relação Estrutura-Atividade
8.
PLoS One ; 15(2): e0224776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32078630

RESUMO

The Target Of Rapamycin (TOR) signaling pathway is known to regulate growth in response to nutrient availability and stress in eukaryotic cells. In the present study, we have investigated the TOR pathway in the white-rot fungus Phanerochaete chrysosporium. Inhibition of TOR activity by rapamycin affects conidia germination and hyphal growth highlighting the conserved mechanism of susceptibility to rapamycin. Interestingly, the secreted protein content is also affected by the rapamycin treatment. Finally, homologs of the components of TOR pathway can be identified in P. chrysosporium. Altogether, those results indicate that the TOR pathway of P. chrysosporium plays a central role in this fungus.


Assuntos
Proteínas Fúngicas/metabolismo , Phanerochaete/crescimento & desenvolvimento , Phanerochaete/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Sítios de Ligação , Proteínas Fúngicas/antagonistas & inibidores , Humanos , Ligação de Hidrogênio , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Proteoma , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Esporos Fúngicos/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , beta-Glucosidase/metabolismo
9.
Nat Chem Biol ; 15(8): 803-812, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285597

RESUMO

Marine seaweeds increasingly grow into extensive algal blooms, which are detrimental to coastal ecosystems, tourism and aquaculture. However, algal biomass is also emerging as a sustainable raw material for the bioeconomy. The potential exploitation of algae is hindered by our limited knowledge of the microbial pathways-and hence the distinct biochemical functions of the enzymes involved-that convert algal polysaccharides into oligo- and monosaccharides. Understanding these processes would be essential, however, for applications such as the fermentation of algal biomass into bioethanol or other value-added compounds. Here, we describe the metabolic pathway that enables the marine flavobacterium Formosa agariphila to degrade ulvan, the main cell wall polysaccharide of bloom-forming Ulva species. The pathway involves 12 biochemically characterized carbohydrate-active enzymes, including two polysaccharide lyases, three sulfatases and seven glycoside hydrolases that sequentially break down ulvan into fermentable monosaccharides. This way, the enzymes turn a previously unexploited renewable into a valuable and ecologically sustainable bioresource.


Assuntos
Flavobacteriaceae/enzimologia , Polissacarídeos/metabolismo , Proteínas de Bactérias , Metabolismo dos Carboidratos , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Genoma Bacteriano , Genômica , Modelos Moleculares , Polissacarídeos/química , Conformação Proteica , Sulfatases/química , Sulfatases/genética , Sulfatases/metabolismo
10.
Antioxidants (Basel) ; 7(10)2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30322144

RESUMO

In plants, the mitochondrial thioredoxin (TRX) system generally comprises only one or two isoforms belonging to the TRX h or o classes, being less well developed compared to the numerous isoforms found in chloroplasts. Unlike most other plant species, Arabidopsis thaliana possesses two TRXo isoforms whose physiological functions remain unclear. Here, we performed a structure⁻function analysis to unravel the respective properties of the duplicated TRXo1 and TRXo2 isoforms. Surprisingly, when expressed in Escherichia coli, both recombinant proteins existed in an apo-monomeric form and in a homodimeric iron⁻sulfur (Fe-S) cluster-bridged form. In TRXo2, the [4Fe-4S] cluster is likely ligated in by the usual catalytic cysteines present in the conserved Trp-Cys-Gly-Pro-Cys signature. Solving the three-dimensional structure of both TRXo apo-forms pointed to marked differences in the surface charge distribution, notably in some area usually participating to protein⁻protein interactions with partners. However, we could not detect a difference in their capacity to reduce nitrogen-fixation-subunit-U (NFU)-like proteins, NFU4 or NFU5, two proteins participating in the maturation of certain mitochondrial Fe-S proteins and previously isolated as putative TRXo1 partners. Altogether, these results suggest that a novel regulation mechanism may prevail for mitochondrial TRXs o, possibly existing as a redox-inactive Fe-S cluster-bound form that could be rapidly converted in a redox-active form upon cluster degradation in specific physiological conditions.

11.
FEBS Lett ; 592(18): 3163-3172, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30112765

RESUMO

Glutathione transferases (GSTs) from the Xi and Omega classes have a catalytic cysteine residue, which gives them reductase activities. Until now, they have been assigned distinct substrates. While Xi GSTs specifically reduce glutathionyl-(hydro)quinones, Omega GSTs are specialized in the reduction of glutathionyl-acetophenones. Here, we present the biochemical and structural analysis of TvGSTX1 and TvGSTX3 isoforms from the wood-degrading fungus Trametes versicolor. TvGSTX1 reduces GS-menadione as expected, while TvGSTX3 reduces both Xi and Omega substrates. An in-depth structural analysis indicates a broader active site for TvGSTX3 due to specific differences in the nature of the residues situated in the C-terminal helix α9. This feature could explain the catalytic duality of TvGSTX3. Based on phylogenetic analysis, we propose that this duality might exist in saprophytic fungi and ascomycetes.


Assuntos
Cisteína/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa Transferase/metabolismo , Trametes/enzimologia , Sequência de Aminoácidos , Biocatálise , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glutationa/análogos & derivados , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/classificação , Glutationa Transferase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Filogenia , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trametes/genética
12.
Plant Sci ; 255: 1-11, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28131337

RESUMO

Redox regulation of chloroplast enzymes via disulphide reduction is believed to control the rates of CO2 fixation. The study of the thioredoxin reduction pathways and of various target enzymes lead to the following guidelines.


Assuntos
Dióxido de Carbono/metabolismo , Tiorredoxinas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Dissulfetos/metabolismo , Fotossíntese/fisiologia , Plantas/metabolismo , Tolueno/análogos & derivados , Evolução Biológica , Cloroplastos/enzimologia , Oxirredução , Tolueno/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(24): 6779-84, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27226308

RESUMO

The Calvin-Benson cycle of carbon dioxide fixation in chloroplasts is controlled by light-dependent redox reactions that target specific enzymes. Of the regulatory members of the cycle, our knowledge of sedoheptulose-1,7-bisphosphatase (SBPase) is particularly scanty, despite growing evidence for its importance and link to plant productivity. To help fill this gap, we have purified, crystallized, and characterized the recombinant form of the enzyme together with the better studied fructose-1,6-bisphosphatase (FBPase), in both cases from the moss Physcomitrella patens (Pp). Overall, the moss enzymes resembled their counterparts from seed plants, including oligomeric organization-PpSBPase is a dimer, and PpFBPase is a tetramer. The two phosphatases showed striking structural homology to each other, differing primarily in their solvent-exposed surface areas in a manner accounting for their specificity for seven-carbon (sedoheptulose) and six-carbon (fructose) sugar bisphosphate substrates. The two enzymes had a similar redox potential for their regulatory redox-active disulfides (-310 mV for PpSBPase vs. -290 mV for PpFBPase), requirement for Mg(2+) and thioredoxin (TRX) specificity (TRX f > TRX m). Previously known to differ in the position and sequence of their regulatory cysteines, the enzymes unexpectedly showed unique evolutionary histories. The FBPase gene originated in bacteria in conjunction with the endosymbiotic event giving rise to mitochondria, whereas SBPase arose from an archaeal gene resident in the eukaryotic host. These findings raise the question of how enzymes with such different evolutionary origins achieved structural similarity and adapted to control by the same light-dependent photosynthetic mechanism-namely ferredoxin, ferredoxin-thioredoxin reductase, and thioredoxin.


Assuntos
Bryopsida , Proteínas de Cloroplastos , Evolução Molecular , Frutose-Bifosfatase , Monoéster Fosfórico Hidrolases , Tiorredoxinas , Bryopsida/enzimologia , Bryopsida/genética , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
14.
Biochem J ; 473(6): 717-31, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26699905

RESUMO

Dehydroascorbate reductases (DHARs), enzymes belonging to the GST superfamily, catalyse the GSH-dependent reduction of dehydroascorbate into ascorbate in plants. By maintaining a reduced ascorbate pool, they notably participate to H2O2 detoxification catalysed by ascorbate peroxidases (APXs). Despite this central role, the catalytic mechanism used by DHARs is still not well understood and there is no supportive 3D structure. In this context, we have performed a thorough biochemical and structural analysis of the three poplar DHARs and coupled this to the analysis of their transcript expression patterns and subcellular localizations. The transcripts for these genes are mainly detected in reproductive and green organs and the corresponding proteins are expressed in plastids, in the cytosol and in the nucleus, but not in mitochondria and peroxisomes where ascorbate regeneration is obviously necessary. Comparing the kinetic properties and the sensitivity to GSSG-mediated oxidation of DHAR2 and DHAR3A, exhibiting 1 or 3 cysteinyl residues respectively, we observed that the presence of additional cysteines in DHAR3A modifies the regeneration mechanism of the catalytic cysteine by forming different redox states. Finally, from the 3D structure of DHAR3A solved by NMR, we were able to map the residues important for the binding of both substrates (GSH and DHA), showing that DHAR active site is very selective for DHA recognition and providing further insights into the catalytic mechanism and the roles of the additional cysteines found in some DHARs.


Assuntos
Ácido Ascórbico/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Oxirredutases/metabolismo , Populus/metabolismo , Sítios de Ligação , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Oxirredução , Oxirredutases/química , Oxirredutases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Conformação Proteica , Nicotiana
15.
Fungal Genet Biol ; 83: 103-112, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26348000

RESUMO

The intracellular systems of detoxification are crucial for the survival of wood degrading fungi. Within these systems, glutathione transferases could play a major role since this family of enzymes is specifically extended in lignolytic fungi. In particular the Ure2p class represents one third of the total GST number in Phanerochaete chrysosporium. These proteins have been phylogenetically split into two subclasses called Ure2pA and Ure2pB. Ure2pB can be classified as Nu GSTs because of shared structural and functional features with previously characterized bacterial isoforms. Ure2pA can rather be qualified as Nu-like GSTs since they exhibit a number of differences. Ure2pA possess a classical transferase activity, a more divergent catalytic site and a higher structural flexibility for some of them, compared to Nu GSTs. The characterization of four members of this Ure2pA subclass (PcUre2pA4, PcUre2pA5, PcUre2pA6 and PcUre2pA8) revealed specific functional and structural features, suggesting that these enzymes have rapidly evolved and differentiated, probably to adapt to the complex chemical environment associated with wood decomposition.


Assuntos
Glutationa Transferase/química , Glutationa Transferase/metabolismo , Sequência de Aminoácidos , Biodiversidade , Domínio Catalítico , Cristalografia por Raios X , Evolução Molecular , Proteínas Fúngicas/química , Glutationa/química , Glutationa/metabolismo , Glutationa Transferase/genética , Isoenzimas , Dados de Sequência Molecular , Phanerochaete/classificação , Phanerochaete/enzimologia , Filogenia , Ligação Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Madeira/microbiologia
16.
Biochim Biophys Acta ; 1853(6): 1513-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25264274

RESUMO

Glutaredoxins (Grxs) are major oxidoreductases involved in the reduction of glutathionylated proteins. Owing to the capacity of several class I Grxs and likely all class II Grxs to incorporate iron-sulfur (Fe-S) clusters, they are also linked to iron metabolism. Most Grxs bind [2Fe-2S] clusters which are oxidatively- and reductively-labile and have identical ligation, involving notably external glutathione. However, subtle differences in the structural organization explain that class II Fe-S Grxs, having more labile and solvent-exposed clusters, can accept Fe-S clusters and transfer them to client proteins, whereas class I Fe-S Grxs usually do not. From the observed glutathione disulfide-mediated Fe-S cluster degradation, the current view is that the more stable Fe-S clusters found in class I Fe-S Grxs might constitute a sensor of oxidative stress conditions by modulating their activity. Indeed, in response to an oxidative signal, inactive holoforms i.e., without disulfide reductase activity, should be converted to active apoforms. Among class II Fe-S Grxs, monodomain Grxs likely serve as carrier proteins for the delivery of preassembled Fe-S clusters to acceptor proteins in organelles. Another proposed function is the repair of Fe-S clusters. From their cytoplasmic and/or nuclear localization, multidomain Grxs function in signalling pathways. In particular, they regulate iron homeostasis in yeast species by modulating the activity of transcription factors and eventually forming heterocomplexes with BolA-like proteins in response to the cellular iron status. We provide an overview of the biochemical and structural properties of Fe-S cluster-loaded Grxs in relation to their hypothetical or confirmed associated functions. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.


Assuntos
Glutarredoxinas/química , Glutationa/química , Proteínas Ferro-Enxofre/química , Estrutura Quaternária de Proteína , Sequência de Aminoácidos , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Homologia de Sequência de Aminoácidos
17.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1180-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195888

RESUMO

The chloroplastic Arabidopsis thaliana Nfs2 (AtNfs2) is a group II pyridoxal 5'-phosphate-dependent cysteine desulfurase that is involved in the initial steps of iron-sulfur cluster biogenesis. The group II cysteine desulfurases require the presence of sulfurtransferases such as SufE proteins for optimal activity. Compared with group I cysteine desulfurases, proteins of this group contains a smaller extended lobe harbouring the catalytic cysteine and have a ß-hairpin constraining the active site. Here, two crystal structures of AtNfs2 are reported: a wild-type form with the catalytic cysteine in a persulfide-intermediate state and a C384S variant mimicking the resting state of the enzyme. In both structures the well conserved Lys241 covalently binds pyridoxal 5'-phosphate, forming an internal aldimine. Based on available homologous bacterial complexes, a model of a complex between AtNfs2 and the SufE domain of its biological partner AtSufE1 is proposed, revealing the nature of the binding sites.


Assuntos
Proteínas de Arabidopsis/química , Liases de Carbono-Enxofre/química , Plastídeos/enzimologia , Sequência de Bases , Cristalografia por Raios X , Primers do DNA , Modelos Moleculares , Conformação Proteica
18.
J Biol Chem ; 289(35): 24588-98, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25012657

RESUMO

BolA proteins are defined as stress-responsive transcriptional regulators, but they also participate in iron metabolism. Although they can form [2Fe-2S]-containing complexes with monothiol glutaredoxins (Grx), structural details are lacking. Three Arabidopsis thaliana BolA structures were solved. They differ primarily by the size of a loop referred to as the variable [H/C] loop, which contains an important cysteine (BolA_C group) or histidine (BolA_H group) residue. From three-dimensional modeling and spectroscopic analyses of A. thaliana GrxS14-BolA1 holo-heterodimer (BolA_H), we provide evidence for the coordination of a Rieske-type [2Fe-2S] cluster. For BolA_C members, the cysteine could replace the histidine as a ligand. NMR interaction experiments using apoproteins indicate that a completely different heterodimer was formed involving the nucleic acid binding site of BolA and the C-terminal tail of Grx. The possible biological importance of these complexes is discussed considering the physiological functions previously assigned to BolA and to Grx-BolA or Grx-Grx complexes.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Ligação a DNA/química , Glutarredoxinas/química , Arabidopsis/metabolismo , Sequência de Bases , Primers do DNA , Ferro/metabolismo , Modelos Moleculares , Análise Espectral/métodos
19.
FEBS Lett ; 587(14): 2125-30, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23711374

RESUMO

Glutathione transferases (GSTs) are known to transfer glutathione onto small hydrophobic molecules in detoxification reactions. The GST Ure2pB1 from Phanerochaete chrysosporium exhibits atypical features, i.e. the presence of two glutathione binding sites and a high affinity towards oxidized glutathione. Moreover, PcUre2pB1 is able to efficiently deglutathionylate GS-phenacylacetophenone. Catalysis is not mediated by the cysteines of the protein but rather by the one of glutathione and an asparagine residue plays a key role in glutathione stabilization. Interestingly PcUre2pB1 interacts in vitro with a GST of the omega class. These properties are discussed in the physiological context of wood degrading fungi.


Assuntos
Proteínas Fúngicas/química , Glutationa Transferase/química , Phanerochaete/enzimologia , Cristalografia por Raios X , Ditiotreitol/química , Glutationa/química , Ligação de Hidrogênio , Insulina/química , Cinética , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Secundária de Proteína , Substâncias Redutoras/química
20.
J Biol Chem ; 286(31): 27515-27, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21632542

RESUMO

Unlike thioredoxins, glutaredoxins are involved in iron-sulfur cluster assembly and in reduction of specific disulfides (i.e. protein-glutathione adducts), and thus they are also important redox regulators of chloroplast metabolism. Using GFP fusion, AtGrxC5 isoform, present exclusively in Brassicaceae, was shown to be localized in chloroplasts. A comparison of the biochemical, structural, and spectroscopic properties of Arabidopsis GrxC5 (WCSYC active site) with poplar GrxS12 (WCSYS active site), a chloroplastic paralog, indicated that, contrary to the solely apomonomeric GrxS12 isoform, AtGrxC5 exists as two forms when expressed in Escherichia coli. The monomeric apoprotein possesses deglutathionylation activity mediating the recycling of plastidial methionine sulfoxide reductase B1 and peroxiredoxin IIE, whereas the dimeric holoprotein incorporates a [2Fe-2S] cluster. Site-directed mutagenesis experiments and resolution of the x-ray crystal structure of AtGrxC5 in its holoform revealed that, although not involved in its ligation, the presence of the second active site cysteine (Cys(32)) is required for cluster formation. In addition, thiol titrations, fluorescence measurements, and mass spectrometry analyses showed that, despite the presence of a dithiol active site, AtGrxC5 does not form any inter- or intramolecular disulfide bond and that its activity exclusively relies on a monothiol mechanism.


Assuntos
Arabidopsis/metabolismo , Cloroplastos/metabolismo , Glutarredoxinas/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Arabidopsis/genética , Clonagem Molecular , Cristalografia por Raios X , Glutarredoxinas/genética , Mutagênese Sítio-Dirigida , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...