Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 243: 125228, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37290544

RESUMO

Melaleuca alternifolia essential oil (MaEO) is a green antimicrobial agent suitable for confection eco-friendly disinfectants to substitute conventional chemical disinfectants commonly formulated with toxic substances that cause dangerous environmental impacts. In this contribution, MaEO-in-water Pickering emulsions were successfully stabilized with cellulose nanofibrils (CNFs) by a simple mixing procedure. MaEO and the emulsions presented antimicrobial activities against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Moreover, MaEO deactivated the SARS-CoV-2 virions immediately. FT-Raman and FTIR spectroscopies indicate that the CNF stabilizes the MaEO droplets in water by the dipole-induced-dipole interactions and hydrogen bonds. The factorial design of experiments (DoE) indicates that CNF content and mixing time have significant effects on preventing the MaEO droplets' coalescence during 30-day shelf life. The bacteria inhibition zone assays show that the most stable emulsions showed antimicrobial activity comparable to commercial disinfectant agents such as hypochlorite. The MaEO/water stabilized-CNF emulsion is a promissory natural disinfectant with antibacterial activity against these bacteria strains, including the capability to damage the spike proteins at the SARS-CoV-2 particle surface after 15 min of direct contact when the MaEO concentration is 30 % v/v.


Assuntos
Anti-Infecciosos , COVID-19 , Desinfetantes , Melaleuca , Óleo de Melaleuca , Celulose/química , Emulsões/química , SARS-CoV-2 , Escherichia coli , Staphylococcus aureus , Anti-Infecciosos/farmacologia , Água/química
2.
J Coat Technol Res ; : 1-15, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37362951

RESUMO

Chitosan is a cationic polysaccharide with intrinsic antimicrobial properties that can be used as an ecological alternative to develop functional materials to inhibit the proliferation of microorganisms. This work evaluates chitosan nanocapsules (CNs) as a self-disinfecting agent to provide bactericidal activity on cotton fabrics (CF), using polyacrylate to bind the CNs on the CF surface. The fabrics were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), contact angle (CA), moisture retention, and antimicrobial tests against Escherichia coli and Bacillus subtilis. The FTIR results showed new peaks related to chitosan structure, indicating the adequate fixation of the CNs on the cotton fibers. SEM images corroborated the polyacrylate binder's efficient adhesion, connecting the CNs and the cotton fiber surface. The CF surface properties were considerably modified, while CN/polyacrylate coating promoted antibacterial activity against the B. subtilis (gram-positive bacteria) for the developed wipe, but they do not display bactericidal effects against E. coli (gram-negative bacteria). Supplementary Information: The online version contains supplementary material available at 10.1007/s11998-023-00761-y.

3.
ACS Biomater Sci Eng ; 9(4): 1891-1899, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36881832

RESUMO

Bioinspired bactericidal surfaces are artificial surfaces that mimic the nanotopography of insect wings and are capable of inhibiting microbial growth by a physicomechanical mechanism. The scientific community has considered them an alternative method to design polymers with surfaces that inhibit bacterial biofilm formation, suitable for self-disinfectant medical devices. In this contribution, poly(lactic acid) (PLA) with nanocone patterns was successfully produced by a novel two-step procedure involving copper plasma deposition followed by argon plasma etching. According to reverse transcription-quantitative polymerase chain reaction tests, the bioinspired PLA nanostructures display antiviral performance to inactivate infectious Omicron severe acute respiratory syndrome coronavirus 2 particles, reducing the amount of the viral genome to less than 4% in just 15 min due to a possible combined effect of mechanical and oxidative stress. The bioinspired antiviral PLA can be suitable for designing personal protection equipment to prevent the transmission of contagious viral diseases, such as Coronavirus Disease 2019.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antibacterianos/farmacologia , Antivirais/farmacologia , Poliésteres
4.
Appl Surf Sci ; 623: 157015, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36942083

RESUMO

Surface modification corresponds to a set of viable technological approaches to introduce antimicrobial properties in materials that do not have such characteristics. Antimicrobial materials are important to prevent the proliferation of microorganisms and minimize the transmission of diseases caused by pathogens. Herein, poly(lactic acid) (PLA) was decorated with nanocones through copper sputtering followed by a plasma etching. Antiviral assays by Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) show that nanostructured Cu-coated PLA has high antiviral activity against Omicron SARS-CoV-2, showing a relative reduction in the amplified RNA (78.8 ± 3.9 %). Atomic Force Microscopy (AFM), X-ray Photoelectron Spectroscopy (XPS), and wear-resistance tests show that 20 wear cycles disrupt the surface nanocone patterns and significantly reduce the Cu content at the surface of the nanostructured Cu-coated PLA, leading to total loss of the antiviral properties of nanostructured PLA against Omicron SARS-CoV-2.

5.
Int J Biol Macromol ; 226: 628-645, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36464191

RESUMO

This paper evaluates corn starch aerogels, studying different crosslinking agent (trisodium citrate) concentrations (1:1, 1:1.5, and 1:2) and sorption conditions (contact time, adsorbent weight, and initial concentration) regarding the potentially toxic elements (PTEs) [Cd(II) or Zn(II)] adsorption of the aqueous systems. Besides, other properties of aerogels, such as structural properties, specific surface area, and mechanical performance, were evaluated. For adsorption results, better values were observed in adsorption capacity and efficiency for the initial concentration of 100 ppm. In addition, an adsorption time of 12 h and an adsorbent weight of 3.0 g obtained better results due to the possible balance in this time and the high specific surface area available for Cd(II) adsorption. As for the type of adsorbent, the Aero 1:1.5 sample (intermediate crosslinking agent concentration) obtained better results, possibly due to the high porosity, smaller pore sizes, high pore density, and high specific surface area (198 m2·g-1). In addition, hydroxyl groups in the starch aerogel removed Cd(II) ions with 30 % adsorption efficiency. Lastly, Aero 1:1.5 obtained a high mechanical strength at compression and a satisfactory compressive modulus. In contrast, starch aerogels did not absorb the Zn(II) ion.


Assuntos
Cádmio , Poluentes Químicos da Água , Amido/química , Água/química , Íons , Poluentes Químicos da Água/química , Adsorção
6.
Mater Today Commun ; 33: 104288, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36033158

RESUMO

The current pandemic of Coronavirus Disease 2019 (COVID-19) raised several concerns about using conventional textiles for manufacturing personal protective equipment without self-disinfecting properties since the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is transmitted mainly by aerosols that can transpose cotton masks. Therefore, developing new cotton fibers with high self-disinfecting ability is essential to avoid a new pandemic due to new SARS-CoV-2 variants. Herein, we developed cotton wipes (CFs) with fibers coated by Ag, TiO2, and Ag/TiO2 hybrid nanoparticles like Brazilian heavy-fruited Myrciaria cauliflora by a sonochemical approach. Moreover, the coated CFs present high antimicrobial performance against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), being able to inactivate infectious SARS-CoV-2 (Delta variant) by the destruction of the spike, membrane, and nucleocapsid proteins while the viral RNA is not significantly affected, according to the molecular biological findings.

7.
J Photochem Photobiol B ; 234: 112538, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35964336

RESUMO

Coronavirus Disease 2019 (COVID-19) occasioned global economic and health systems collapse. Also, it raised several concerns about using conventional cotton fabrics for manufacturing personal protective equipment without the antimicrobial capacity to inactivate viruses, such as Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and its variants. Therefore, developing antimicrobial cotton fibers is crucial to avoid new global pandemics or the transmission of dangerous pathogens that remain on surfaces for long periods, especially in hospitals and medical clinics. Herein, we developed antimicrobial cotton fabrics with Ag, ZnO, and Ag/ZnO nanoparticles and evaluated their bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), photocatalytic activity, and antiviral activity against Delta SARS-CoV-2. Although the antimicrobial fabrics are effective against these bacteria, they only reduce part of the SARS-CoV-2 virions during the first 15 min of direct contact via damage only to biological structures on the viral surface particle while the viral RNA remains intact.


Assuntos
Anti-Infecciosos , Tratamento Farmacológico da COVID-19 , Nanopartículas Metálicas , Óxido de Zinco , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Bactérias , Escherichia coli , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , SARS-CoV-2 , Staphylococcus aureus , Têxteis , Óxido de Zinco/química , Óxido de Zinco/farmacologia
8.
Int J Biol Macromol ; 188: 628-638, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389394

RESUMO

Thermoplastic starch (TPS) films filled with chitosan nanocapsules (CN) containing essential oils (EO) were prepared aiming active packaging. Two different EOs were studied: Ho wood (H) and Cinnamon (C). Besides, different capsules concentrations were investigated (1, 3, and 5 wt%), and the films were evaluated by chemical structure, thermal stability, crystallinity, water vapor permeability, antimicrobial assays, and potential application for strawberry packaging. The TPS/CN-Ho wood films showed a strong interaction between chitosan-starch, mainly for 3 and 5 wt%, confirmed by XRD. The FT-Raman spectra of TPS/CN-Cinnamon film indicated that Cinnamon EO quickly migrated to starch films, probably due to the new crystal structure, named C-type, affecting the film's water permeability. The addition of 1 and 3 wt% CN loaded with Ho wood or Cinnamon EO to the films decreased the water permeability. 3 wt% CN was the optimum concentration to inhibit the Escherichia coli or Bacillus subtillis growth on the films, confirming their biological activity. The films' preservation properties were evaluated using strawberries, and films with 1 or 3 wt% loaded-CN could extend the strawberries' shelf life without fungi contamination. The developed TPS films can be used as active food packaging or other films for biomedical or pharmaceutical applications.


Assuntos
Plásticos Biodegradáveis/farmacologia , Quitosana/química , Armazenamento de Alimentos , Nanocápsulas/química , Plásticos Biodegradáveis/química , Quitosana/síntese química , Cinnamomum zeylanicum/química , Escherichia coli/efeitos dos fármacos , Frutas/normas , Testes de Sensibilidade Microbiana , Óleos Voláteis/síntese química , Óleos Voláteis/química , Amido/química
9.
Int J Biol Macromol ; 181: 112-124, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-33771541

RESUMO

Biopolymers are promising materials for water treatment applications due to their abundance, low cost, expandability, and chemical structure. In this work, gelatin hydrogels filled with cellulose in the form of pristine eucalyptus residues (PER) or treated eucalyptus residues (TER) were prepared for adsorption and chromium removal in contaminated water. PER is a lignocellulosic compound, with cellulose, hemicellulose, and lignin, while TER has cellulose as a major component. FT-Raman Spectroscopy and FTIR analysis confirmed the crosslink reaction with glutaraldehyde and indicated that fillers altered the gelatin molecular vibrations and formed new hydrogen bonds, impacting the hydrogels' crystalline structure. The hydrogen bond energy was altered by the cellulosic fillers' addition and resulted in higher thermal stability (~10 °C). Hydrogels presented a Fickian diffusion, where gelatin hydrogel showed the highest swelling ability (466%), and composites showed lower values with the filler content increase. The chromium adsorption capacity presented values between 12 and 13 mg/g, i.e., featuring an excellent removal capacity which is related with hydrogel crosslinked structure and fibers surface hydroxyl groups, highlighting gelatin hydrogel TER 5% with better removal capacity. The developed hydrogels were produced from biomacromolecules with low-cost and potential application in contaminated water.


Assuntos
Celulose/química , Cromo/isolamento & purificação , Gelatina/química , Hidrogéis/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Difusão , Eucalyptus/química , Ligação de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termogravimetria , Água/química , Difração de Raios X
10.
Chemosphere ; 267: 129288, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33352367

RESUMO

In this work, we prepared PU-composites with Australian palm residues (PR) in different contents (5, 10, 15, and 20 wt%) and granulometry (28 and 35 mesh) to improve the oil (crude oil and S500 Diesel) sorption capacity. The foams were characterized by life cycle assessment (LCA), scanning electron microscopy, oil sorption, desorption, and Langmuir, Freundlich, and Temkin sorption isotherms. LCA indicated that higher PR contents decreased the foam environmental impacts than the classical residue handling, indicating that 20 wt% PR is the better environmental option, independent of the residues granulometry. The PR incorporation into PU foams resulted in smaller pore sizes, with a higher number of homogeneous open-cells. The PU composites exhibited higher oil adsorption capacity than the pristine foam. The PU sample showed maximum absorption capability of 6.1 and 6.7 g g-1 for diesel S500 and crude oil, and the composites showed increased values of ∼18 g g-1 and ∼24 g g-1. The Langmuir model presented the best fit and predicted a maximum adsorption capacity of 30.39 and 25.57 g g-1 for PU-20% PR 28 and 35 mesh, respectively. The composites presented excellent reusability with PU-20% PR (28 mesh) and PU-20% PR (35 mesh), showing removal efficiency after 16 and 9 cycles, respectively. The results classify the developed foams as excellent materials to sorb spilled crude oil in marine accidents.


Assuntos
Petróleo , Adsorção , Austrália , Poliuretanos , Água do Mar
11.
ACS Appl Nano Mater ; 4(12): 12949-12956, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-37556280

RESUMO

The successful development of multifunctional cotton fabrics with antimicrobial and antiviral activities is essential to prevent the proliferation of microorganisms and transmission of coronavirus virions today, especially with the emergence of new variants of SARS-CoV-2. In this work, we developed antimicrobial cotton fabrics with Ag/TiO2 nanoparticles synthesized via sonochemistry. Here, we show that more than 50% of infectious SARS-CoV-2 remain active after prolonged direct contact self-disinfecting materials capable of inhibiting the proliferation of Escherichia coli and Staphylococcus aureus. The findings bring several epidemiologic worries about using silver and TiO2 as self-disinfecting nanostructured agents to prevent coronavirus transmission.

12.
Chemosphere ; 269: 128708, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33168282

RESUMO

This work aimed to prepare surfactant modified-PBAT (poly(butylene adipate-co-terephthalate)) sheets with superior properties to increase the PBAT applicability and be a possible solution for plastic disposal environmental problems. Three different surfactant contents (0, 1, 5, and 10 wt%) were investigated, and their effects on PBAT chemical structure, mechanical and morphological properties, wettability, and water absorption were investigated. Modified-PBAT samples showed high hydrogen bond coefficients (0.57) than the pristine PBAT (0.54), indicating an excellent electrostatic interaction between both components and the formation of a rigid hydrogen-bonded network, as confirmed by mechanical tests, where the elastic modulus values for PBAT and PBAT+10% surfactant were 44 and 60 MPa. SEM images and roughness measurements showed changes in PBAT morphology after surfactant addition, improving the roughness and wettability by the voids and polar groups presence, altering the water absorption (WA) behavior. The higher water affinity resulted in high water absorption for PBAT-10%S (17%) compared to the pristine PBAT (2%), which improves hydrolysis tendency, which is the initial step to biodegradation. Biodegradation results indicated that the roughness and WA behavior influenced the biodegradation rate, facilitating hydrolysis and microbial attack, and accelerating modified samples weight loss. Our results suggested developing a material with superior mechanical properties, mainly for PBAT-10%S, that can be applied in several applications, such as packaging and furniture. After discharge, it is not an environmental problem, being a biodegradable material with a green character.


Assuntos
Poliésteres , Tensoativos , Hidrólise , Água
13.
Macromol Biosci ; 7(9-10): 1121-31, 2007 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-17676656

RESUMO

Lignocellulosic materials can significantly contribute to the development of composites, since it is possible to chemically and/or physically modify their main components, cellulose, hemicelluloses and lignin. This may result in materials more stable and with more uniform properties. It has previously been shown that chemically modified sisal fibers by ClO(2) oxidation and reaction with FA and PFA presented a thin coating layer of PFA on their surface. FA and PFA were chosen as reagents because these alcohols can be obtained from renewable sources. In the present work, the effects of the polymeric coating layer as coupling agent in phenolic/sisal fibers composites were studied. For a more detailed characterization of the fibers, IGC was used to evaluate the changes that occurred at the sisal fibers surface after the chemical modifications. The dispersive and acid-base properties of untreated and treated sisal fibers surfaces were determined. Biodegradation experiments were also carried out. In a complementary study, another PFA modification was made on sisal fibers, using K2Cr2O(7) as oxidizing agent. In this case the oxidation effects involve mainly the cellulose polymer instead of lignin, as observed when the oxidation was carried out with ClO(2). The SEM images showed that the oxidation of sisal fibers followed by reaction with FA or PFA favored the fiber/phenolic matrix interaction at the interface. However, because the fibers were partially degraded by the chemical treatment, the impact strength of the sisal-reinforced composites decreased. By contrast, the chemical modification of fibers led to an increase of the water diffusion coefficient and to a decrease of the water absorption of the composites reinforced with modified fibers. The latter property is very important for certain applications, such as in the automotive industry.


Assuntos
Celulose , Lignina , Fenóis/química , Plantas/química , Polímeros , Biodegradação Ambiental , Celulose/química , Celulose/metabolismo , Lignina/química , Lignina/metabolismo , Teste de Materiais , Estrutura Molecular , Oxirredução , Polímeros/química , Polímeros/metabolismo , Propriedades de Superfície , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...