Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36771057

RESUMO

(1) Background: Malignant gliomas are aggressive tumors characterized by fast cellular growth and highly invasive properties. Despite all biological and clinical advances in therapy, the standard treatment remains essentially palliative. Therefore, searching for alternative therapies that minimize adverse symptoms and improve glioblastoma patients' outcomes is imperative. Natural products represent an essential source in the discovery of such new drugs. Plants from the cerrado biome have been receiving increased attention due to the presence of secondary metabolites with significant therapeutic potential. (2) Aim: This study provides data on the cytotoxic potential of 13 leaf extracts obtained from plants of 5 families (Anacardiaceae, Annonaceae, Fabaceae, Melastomataceae e Siparunaceae) found in the Brazilian cerrado biome on a panel of 5 glioma cell lines and one normal astrocyte. (3) Methods: The effect of crude extracts on cell viability was evaluated by MTS assay. Mass spectrometry (ESI FT-ICR MS) was performed to identify the secondary metabolites classes presented in the crude extracts and partitions. (4) Results: Our results revealed the cytotoxic potential of Melastomataceae species Miconia cuspidata, Miconia albicans, and Miconia chamissois. Additionally, comparing the four partitions obtained from M. chamissois crude extract indicates that the chloroform partition had the greatest cytotoxic activity against the glioma cell lines. The partitions also showed a mean IC50 close to chemotherapy, temozolomide; nevertheless, lower toxicity against normal astrocytes. Analysis of secondary metabolites classes presented in these crude extracts and partitions indicates the presence of phenolic compounds. (5) Conclusions: These findings highlight M. chamissois chloroform partition as a promising component and may guide the search for the development of additional new anticancer therapies.


Assuntos
Antineoplásicos , Glioma , Melastomataceae , Humanos , Brasil , Clorofórmio , Linhagem Celular , Antineoplásicos/farmacologia , Extratos Vegetais/farmacologia , Melastomataceae/química , Glioma/tratamento farmacológico , Ecossistema
2.
Int J Mol Sci ; 22(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806119

RESUMO

Cervical cancer is the third most common in Brazilian women. The chemotherapy used for the treatment of this disease can cause many side effects; then, to overcome this problem, new treatment options are necessary. Natural compounds represent one of the most promising sources for the development of new drugs. In this study, 13 different species of 6 families from the Brazilian Cerrado vegetation biome were screened against human cervical cancer cell lines (CCC). Some of these species were also evaluated in one normal keratinocyte cell line (HaCaT). The effect of crude extracts on cell viability was evaluated by a colorimetric method (MTS assay). Extracts from Annona crassiflora, Miconia albicans, Miconia chamissois, Stryphnodendron adstringens, Tapirira guianensis, Xylopia aromatica, and Achyrocline alata showed half-maximal inhibitory concentration (IC50) values < 30 µg/mL for at least one CCC. A. crassiflora and S. adstringens extracts were selective for CCC. Mass spectrometry (Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (ESI FT-ICR MS)) of A. crassiflora identified fatty acids and flavonols as secondary compounds. One of the A. crassiflora fractions, 7C24 (from chloroform partition), increased H2AX phosphorylation (suggesting DNA damage), PARP cleavage, and cell cycle arrest in CCC. Kaempferol-3-O-rhamnoside and oleic acid were bioactive molecules identified in 7C24 fraction. These findings emphasize the importance of investigating bioactive molecules from natural sources for developing new anti-cancer drugs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Bioprospecção/métodos , Colorimetria/métodos , Neoplasias do Colo do Útero/metabolismo , Annona/metabolismo , Brasil/epidemiologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Ecossistema , Ácidos Graxos/química , Feminino , Flavonóis/química , Células HaCaT , Células HeLa , Humanos , Concentração Inibidora 50 , Espectrometria de Massas , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Neoplasias do Colo do Útero/tratamento farmacológico
3.
Stem Cell Res Ther ; 12(1): 206, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762015

RESUMO

Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15-18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.


Assuntos
Antineoplásicos , Neoplasias Encefálicas , Glioblastoma , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas
4.
Nat Prod Res ; 35(22): 4807-4813, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32081041

RESUMO

Recently, many studies have reported the anticancer properties of flavonoid luteolin against a variety of tumors, but there is still a lack in the description of its mechanism of action. In attempt to better contribute to the literature, we evaluated the antiproliferative activity of luteolin extracted by Fridericia platyphylla in a panel of tumor cell lines representative of six different tissues. Luteolin presented antiproliferative activity for all the assessed tumor cell lines, being glioblastoma the most sensitive one. This compound was able to inhibit U-251 cells migration and tumorigenesis. Besides, luteolin leads U-251 tumor cells to apoptosis death by depolarisation of the mitochondrial membrane, ERK proteins phosphorylation, cleavage of PARP and Caspase 9, further inducing DNA damage by H2AX phosphorylation, which had not yet been described for glioblastomas. Altogether, our results reaffirm luteolin as a potential therapeutic drug.


Assuntos
Glioblastoma , Apoptose , Linhagem Celular Tumoral , Flavonoides , Glioblastoma/tratamento farmacológico , Humanos , Luteolina/farmacologia
5.
Eur J Med Chem ; 192: 112185, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145644

RESUMO

Over the past decade, we described a novel tumour targeted approach that sought to design "combi-molecules" to hit two distinct targets in tumour cells. Here, to generate small combi-molecules with strong DNA damaging potential while retaining EGFR inhibitory potency, we developed the first synthetic strategy to access the 6-N, N-disubstituted quinazoline scaffold and designed JS61 to possess a nitrogen mustard function directly attached to the 6-position of the quinazoline ring. We compared its biological activity with that of structures containing either a hemi mustard or a non-alkylating substituent. Surprisingly, the results showed that JS61, while capable of inducing strong DNA damage, exhibited moderate EGFR inhibitory potency. In contrast, "combi-molecules" with no bulky substituent at the N-6 position (e.g. ZR2002 and JS84) showed stronger EGFR and growth inhibitory potency than JS61 in a panel of lung cancer cells. To rationalize these results, X-ray crystallography and molecular modeling studies were undertaken, and the data obtained indicated that bulkiness of the 6-N,N-disubstituted moieties hinder its binding to the ATP site and affects binding reversibility.


Assuntos
Antineoplásicos/farmacologia , DNA/efeitos dos fármacos , Quinazolinas/farmacologia , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Bovinos , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
6.
Molecules ; 24(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683835

RESUMO

Plant-based compounds are an option to explore and perhaps overcome the limitations of current antitumor treatments. Annona coriacea Mart. is a plant with a broad spectrum of biological activities, but its antitumor activity is still unclear. The purpose of our study was to determine the effects of A. coriacea fractions on a panel of cervical cancer cell lines and a normal keratinocyte cell line. The antitumor effect was investigated in vitro by viability assays, cell cycle, apoptosis, migration, and invasion assays. Intracellular signaling was assessed by Western blot, and major compounds were identified by mass spectrometry. All fractions exhibited a cytotoxic effect on cisplatin-resistant cell lines, SiHa and HeLa. C3 and C5 were significantly more cytotoxic and selective than cisplatin in SiHa and Hela cells. However, in CaSki, a cisplatin-sensitive cell line, the compounds did not demonstrate higher cytotoxicity when compared with cisplatin. Alkaloids and acetogenins were the main compounds identified in the fractions. These fractions also markedly decreased cell proliferation with p21 increase and cell cycle arrest in G2/M. These effects were accompanied by an increase of H2AX phosphorylation levels and DNA damage index. In addition, fractions C3 and C5 promoted p62 accumulation and decrease of LC3II, as well as acid vesicle levels, indicating the inhibition of autophagic flow. These findings suggest that A. coriacea fractions may become effective antineoplastic drugs and highlight the autophagy inhibition properties of these fractions in sensitizing cervical cancer cells to treatment.


Assuntos
Annona/química , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Células HeLa , Humanos , Extratos Vegetais/química , Transdução de Sinais/efeitos dos fármacos
7.
Invest New Drugs ; 37(5): 1029-1035, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30706338

RESUMO

The latex from Euphorbia tirucalli is used in Brazil as a folk medicine for several diseases, including cancer. Recently, we showed a cytotoxic activity of E. tirucalli euphol in a wide range of cancer cell lines. Moreover, we showed that euphol inhibits proliferation, motility and colony formation in pancreatic cancer cells, induces autophagy and sensitizes glioblastoma cells to temozolomide cytotoxicity. Herein, we report in vitro activity of three semi-synthetic ingenol compounds derived from E. tirucalli, IngA (ingenol-3-trans-cinnamate), IngB (ingenol-3-hexanoate) and IngC (ingenol-3-dodecanoate), against a large panel of human cancer cell lines. Antineoplastic effects of the three semi-synthetic compounds were assessed using MTS assays on 70 cancer cell lines from a wide array of solid tumors. Additionally, their antitumor potential was compared with known compounds of the same class, namely ingenol-3-angelate (Picato®) and ingenol 3,20-dibenzoate and in combination with standard chemotherapeutic agents. We observed that IngA, B, and C exhibited dose-dependent cytotoxic effects. Amongst the semi-synthetic compounds, IngC displayed the best activity across the tumor cell lines. In comparison with ingenol-3-angelate and ingenol 3,20-dibenzoate, IngC showed a mean of 6.6 and 3.6-fold higher efficacy, respectively, against esophageal cancer cell lines. Besides, IngC sensitized esophageal cancer cells to paclitaxel treatment. In conclusion, the semi-synthetic ingenol compounds, in particular, IngC, demonstrated a potent antitumor activity on all cancer cell lines evaluated. Although the underlying mechanisms of action of IngC are not elucidated, our results provide insights for further studies suggesting IngC as a putative therapy for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Diterpenos/farmacologia , Euphorbia/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos Fitogênicos/química , Diterpenos/química , Humanos , Células Tumorais Cultivadas
8.
Invest New Drugs ; 37(4): 602-615, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30155717

RESUMO

Cervical cancer is the third most commonly diagnosed tumor type and the fourth cause of cancer-related death in females. Therapeutic options for cervical cancer patients remain very limited. Annona crassiflora Mart. is used in traditional medicine as antimicrobial and antineoplastic agent. However, little is known about its antitumoral properties. In this study the antineoplastic effect of crude extract and derived partitions from A. crassiflora Mart in cervical cancer cell lines was evaluated. The crude extract significantly alters cell viability of cervical cancer cell lines as well as proliferation and migration, and induces cell death in SiHa cells. Yet, the combination of the crude extract with cisplatin leads to antagonistic effect. Importantly, the hexane partition derived from the crude extract presented cytotoxic effect both in vitro and in vivo, and initiates cell responses, such as DNA damage (H2AX activity), apoptosis via intrinsic pathway (cleavage of caspase-9, caspase-3, poly (ADP-ribose) polymerase (PARP) and mitochondrial membrane depolarization) and decreased p21 expression by ubiquitin proteasome pathway. Concluding, this work shows that hexane partition triggers several biological responses such as DNA damage and apoptosis, by intrinsic pathways, and was also able to promote a direct decrease in tumor perimeter in vivo providing a basis for further investigation on its antineoplastic activity on cervical cancer.


Assuntos
Annona , Antineoplásicos Fitogênicos/farmacologia , Extratos Vegetais/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Embrião de Galinha , Dano ao DNA , Feminino , Hexanos/química , Humanos , Neovascularização Patológica/tratamento farmacológico , Folhas de Planta , Solventes/química , Neoplasias do Colo do Útero/patologia
9.
Invest New Drugs ; 37(2): 223-237, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29931585

RESUMO

Glioblastoma (GBM) is the most frequent and aggressive type of brain tumor. There are limited therapeutic options for GBM so that new and effective agents are urgently needed. Euphol is a tetracyclic triterpene alcohol, and it is the main constituent of the sap of the medicinal plant Euphorbia tirucalli. We previously identified anti-cancer activity in euphol based on the cytotoxicity screening of 73 human cancer cells. We now expand the toxicological screening of the inhibitory effect and bioactivity of euphol using two additional glioma primary cultures. Euphol exposure showed similar cytotoxicity against primary glioma cultures compared to commercial glioma cells. Euphol has concentration-dependent cytotoxic effects on cancer cell lines, with more than a five-fold difference in the IC50 values in some cell lines. Euphol treatment had a higher selective cytotoxicity index (0.64-3.36) than temozolomide (0.11-1.13) and reduced both proliferation and cell motility. However, no effect was found on cell cycle distribution, invasion and colony formation. Importantly, the expression of the autophagy-associated protein LC3-II and acidic vesicular organelle formation were markedly increased, with Bafilomycin A1 potentiating cytotoxicity. Finally, euphol also exhibited antitumoral and antiangiogenic activity in vivo, using the chicken chorioallantoic membrane assay, with synergistic temozolomide interactions in most cell lines. In conclusion, euphol exerted in vitro and in vivo cytotoxicity against glioma cells, through several cancer pathways, including the activation of autophagy-associated cell death. These findings provide experimental support for further development of euphol as a novel therapeutic agent for GBM, either alone or in combination chemotherapy.


Assuntos
Autofagia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Euphorbia/química , Glioblastoma/patologia , Lanosterol/análogos & derivados , Temozolomida/farmacologia , Antineoplásicos Alquilantes/farmacologia , Apoptose , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Movimento Celular , Proliferação de Células , Glioblastoma/tratamento farmacológico , Humanos , Lanosterol/farmacologia , Células Tumorais Cultivadas
10.
Retina ; 35(2): 364-70, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25111686

RESUMO

PURPOSE: To investigate potential retinal neuroprotective effects of intravitreal triamcinolone acetonide and dexamethasone implant in rabbits after pars plana vitrectomy and intravitreal silicone oil injection. METHODS: The right eyes of 84 rabbits, divided into 3 groups of 28 rabbits each, underwent standard 3-port pars plana vitrectomy with silicone oil (SO group), silicone oil and intravitreal dexamethasone implant (SO/DEX group), or silicone oil and triamcinolone acetonide (SO/TA group). The retina from the left eye of each rabbit served as a control. The animals were killed at 4 weeks after surgery. Qualitative and quantitative histopathologic analyses were performed 4 weeks after surgery, and investigation for apoptosis was performed using the Tunel assay. RESULTS: Intravitreal triamcinolone acetonide and dexamethasone implant were associated with increased retinal neuronal survival, primarily in the outer nuclear layer, inner nuclear layer, and ganglion cell layer. In the SO group, the cell density in eyes that underwent PPV/SO was 31% lower in the outer nuclear layer, 33% lower in the inner nuclear layer, and 45% lower in the ganglion cell layer compared to control eyes (p < 0.05 for all PPV/SO versus control comparisons). Compared to eyes that underwent PPV/SO, the cell density in eyes treated with triamcinolone was 27% higher in the outer nuclear layer, 66% higher in the inner nuclear layer, and 100% higher in the ganglion cell layer (p < 0.05 for all triamcinolone versus PPV/SO comparisons). Compared to eyes that underwent PPV/SO, the cell density in eyes treated with dexamethasone was 46% higher in the outer nuclear layer, 62% higher in the inner nuclear layer, and 77% higher in the ganglion cell layer (p < 0.05 for all dexamethasone versus PPV/SO comparisons). Analyses using the Tunnel assay demonstrated apoptotic bodies in all eyes in the SO group, compared with none of the eyes in the SO/TA and SO/DEX groups. The presence of cell nuclei stained with 49,6-diamidino-2-phenylindole (DAPI) was demonstrated in all groups. CONCLUSION: In this experimental model of neuroprotection, increased retinal neuronal survival was seen in the steroid-treated groups compared with the controls.


Assuntos
Dexametasona/administração & dosagem , Tamponamento Interno , Glucocorticoides/farmacologia , Retina/efeitos dos fármacos , Óleos de Silicone/administração & dosagem , Triancinolona Acetonida/farmacologia , Vitrectomia , Animais , Apoptose , Contagem de Células , Sobrevivência Celular , Implantes de Medicamento , Marcação In Situ das Extremidades Cortadas , Injeções Intravítreas , Coelhos , Neurônios Retinianos/citologia , Neurônios Retinianos/efeitos dos fármacos , Neurônios Retinianos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...