Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fungal Biol ; 127(7-8): 1136-1145, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37495304

RESUMO

Although Metarhizium anisopliae is one of the most studied fungal biocontrol agents, its infection mechanism is far from being completely understood. Using multidimensional protein identification technology (MudPIT), we evaluated the differential secretome of M. anisopliae E6 induced by the host Rhipicephalus microplus cuticle. The proteomic result showed changes in the expression of 194 proteins after exposure to host cuticle, such as proteins involved in adhesion, penetration, stress and fungal defense. Further, we performed a comparative genomic distribution of differentially expressed proteins of the M. anisopliae secretome against another arthropod pathogen, using the Beauveria bassiana ARSEF2860 protein repertory. Among 47 analyzed protein families, thirty were overexpressed in the M. anisopliae E6 predicted genome compared to B. bassiana. An in vivo toxicity assay using a Galleria mellonella model confirmed that the M. anisopliae E6 secretome was more toxic in cattle tick infections compared to other secretomes, including B. bassiana with cattle ticks and M. anisopliae E6 with the insect Dysdereus peruvianus, which our proteomic results had also suggested. These results help explain molecular aspects associated with host infection specificity due to genetic differences and gene expression control at the protein level in arthropod-pathogenic fungi.


Assuntos
Beauveria , Metarhizium , Rhipicephalus , Animais , Metarhizium/genética , Secretoma , Especificidade de Hospedeiro , Proteômica , Controle Biológico de Vetores/métodos , Rhipicephalus/genética , Rhipicephalus/microbiologia
2.
Int J Mol Sci ; 23(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555275

RESUMO

Gastrointestinal diseases, such as peptic ulcers, are caused by a damage in the gastric mucosa provoked by several factors. This stomach injury is regulated by many inflammatory mediators and is commonly treated with proton-pump inhibitors, histamine H2 receptor blockers and antacids. However, various medicinal plants have demonstrated positive effects on gastric ulcer treatment, including plants of the Ceiba genus. The aim of this study was to evaluate the antiulcer and anti-inflammatory activities of the stem bark ethanolic extract of Ceiba speciosa (A. St.-Hil.) Ravenna. We performed a preliminary quantification of phenolic compounds by high-performance liquid chromatography-diode array detection (HPLC-DAD), followed by the prospection of other chemical groups through nuclear magnetic resonance (NMR) spectroscopy. A set of in vitro assays was used to evaluate the extract potential regarding its antioxidant activity (DPPH: 19.83 ± 0.34 µg/mL; TPC: 307.20 ± 6.20 mg GAE/g of extract), effects on cell viability and on the release of TNF-α in whole human blood. Additionally, in vivo assays were performed to evaluate the leukocyte accumulation and total protein quantification in carrageenan-induced air pouch, as well as the antiulcerogenic effect of the extract on an ethanol-induced ulcer in rats. The extract contains flavonoids and phenolic compounds, as well as sugars and quinic acid derivatives exhibiting potent antioxidant activity and low toxicity. The extract reduced the release of TNF-α in human blood and inhibited the activity of p38α (1.66 µg/mL), JAK3 (5.25 µg/mL), and JNK3 (8.34 µg/mL). Moreover, it reduced the leukocyte recruitment on the pouch exudate and the formation of edema, reverting the effects caused by carrageenan. The extract presented a significant prevention of ulcer formation and a higher reduction than the reference drug, Omeprazole. Therefore, C. speciosa extract has demonstrated relevant therapeutic potential for the treatment of gastric diseases, deserving the continuation of further studies to unveil the mechanisms of action of plant bioactive ingredients.


Assuntos
Antiulcerosos , Ceiba , Extratos Vegetais , Úlcera Gástrica , Animais , Humanos , Ratos , Antiulcerosos/farmacologia , Antioxidantes/farmacologia , Carragenina/efeitos adversos , Ceiba/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Úlcera
3.
Microbiol Res ; 248: 126753, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33882376

RESUMO

Menadione (MND) is known to induce oxidative stress in fungal cells. Here, we explore how exposure to this molecule alters conidial enzyme activities, fungal efficacy against Rhipicephalus microplus, and mycelial secretion (secretome) of an isolate of Metarhizium anisopliae sensu lato. First, the fungus was exposed to different MND concentrations in potato-dextrose-agar (PDA) to determine the LC50 by evaluating conidia germination (38µM). To ensure high cell integrity, a sublethal dose of MND (half of LC50) was added to solid (PDA MND) and liquid media (MS MND). Changes in colony growth, a slight reduction in conidia production, decreases in conidial surface Pr1 and Pr2 activities as well as improvements in proteolytic and antioxidant (catalase, superoxide dismutase, and peroxidase) conidial intracellular activities were observed for PDA MND conidia. Additionally, PDA MND conidia had the best results for killing tick larvae, with the highest mortality rates until 15 days after treatment, which reduces both LC50 and LT50, particularly at 108 conidia mL-1. The diversity of secreted proteins after growth in liquid medium + R. microplus cuticle (supplemented or not with half of MND LC50), was evaluated by mass spectrometry-based proteomics. A total of 654 proteins were identified, 31 of which were differentially regulated (up or down) and mainly related to antioxidant activity (catalase), pathogenicity (Pr1B, Pr1D, and Pr1K), cell repair, and morphogenesis. In the exclusively MS MND profile, 48 proteins, mostly associated with cellular signaling, nutrition, and antioxidant functions, were distinguished. Finally, enzymatic assays were performed to validate some of these proteins. Overall, supplementation with MND in the solid medium made conidia more efficient at controlling R. microplus larvae, especially by increasing, inside the conidia, the activity of some infection-related enzymes. In the liquid medium (a consolidated study model that mimics some infection conditions), proteins were up- and/or exclusively-regulated in the presence of MND, which opens a spectrum of new targets for further study to improve biological control of ticks using Metarhizium species.


Assuntos
Proteínas Fúngicas/metabolismo , Metarhizium/efeitos dos fármacos , Metarhizium/patogenicidade , Controle Biológico de Vetores/métodos , Rhipicephalus/microbiologia , Esporos Fúngicos/enzimologia , Virulência/efeitos dos fármacos , Vitamina K 3/farmacologia , Animais , Proteínas Fúngicas/genética , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metarhizium/enzimologia , Metarhizium/genética , Estresse Oxidativo/efeitos dos fármacos , Peroxidase/genética , Peroxidase/metabolismo , Rhipicephalus/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/genética , Esporos Fúngicos/patogenicidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Vitamina K 3/análise
4.
ACS Omega ; 6(4): 3238-3243, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33553941

RESUMO

The COVID-19 pandemic caused by the new coronavirus (SARS-CoV-2) has become a global emergency issue for public health. This threat has led to an acceleration in related research and, consequently, an unprecedented volume of clinical and experimental data that include changes in gene expression resulting from infection. The SARS-CoV-2 infection database (SARSCOVIDB: https://sarscovidb.org/) was created to mitigate the difficulties related to this scenario. The SARSCOVIDB is an online platform that aims to integrate all differential gene expression data, at messenger RNA and protein levels, helping to speed up analysis and research on the molecular impact of COVID-19. The database can be searched from different experimental perspectives and presents all related information from published data, such as viral strains, hosts, methodological approaches (proteomics or transcriptomics), genes/proteins, and samples (clinical or experimental). All information was taken from 24 articles related to analyses of differential gene expression out of 5,554 COVID-19/SARS-CoV-2-related articles published so far. The database features 12,535 genes whose expression has been identified as altered due to SARS-CoV-2 infection. Thus, the SARSCOVIDB is a new resource to support the health workers and the scientific community in understanding the pathogenesis and molecular impact caused by SARS-CoV-2.

5.
Brain Behav Immun Health ; 11: 100196, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33521688

RESUMO

Coronavirus disease 2019 (COVID-19) was initially characterized due to its impacts on the respiratory system; however, many recent studies have indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) significantly affects the brain. COVID-19 can cause neurological complications, probably caused by the induction of a cytokine storm, since there is no evidence of neurotropism by SARS-CoV-2. In line with this, the COVID-19 outbreak could accelerate the progression or affect the clinical outcomes of neuropsychiatric conditions. Thus, we analyzed differential gene expression datasets for clinical samples of COVID-19 patients and identified 171 genes that are associated with the pathophysiology of the following neuropsychiatric disorders: alcohol dependence, autism, bipolar disorder, depression, panic disorder, schizophrenia, and sleep disorder. Several of the genes identified are associated with causing some of these conditions (classified as elite genes). Among these elite genes, 9 were found for schizophrenia, 6 for autism, 3 for depression/major depressive disorder, and 2 for alcohol dependence. The patients with the neuropsychiatric conditions associated with the genes identified may require special attention as COVID-19 can deteriorate or accelerate neurochemical dysfunctions, thereby aggravating clinical outcomes.

6.
Toxicol Lett ; 341: 11-22, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33472085

RESUMO

AIMS: Accidental contact with the Lonomia obliqua caterpillar is a common event in southern Brazil. Envenomed victims present consumption coagulopathy, which can evolve to acute kidney injury (AKI). In the present study, we searched for AKI biomarkers and changes in molecular pathway signatures through urine proteomic analysis. METHODOLOGY: Male Wistar rats were injected with L. obliqua venom (1.5 mg/kg, via s.c.) or 0.9 % NaCl and distributed into metabolic cages. After 24 h, urine was obtained, and the set of differentially regulated proteins was analyzed by MudPIT technology in an OrbiTRAP mass spectrometer. RESULTS: L. obliqua venom leads to an increase in urine output and water and electrolyte excretion and to an increase in the albumin to creatine ratio in urine. The proteomic analysis revealed an up-regulation of tubular injury biomarkers, such as neutrophil-gelatinase associated lipocalin (NGAL) and cystatin C, in urine from envenomed rats. Several components related to the heme scavenging system were up-regulated or exclusively identified in urine from envenomed animals. There was an increase in urinary heme levels and hemoglobin subunits, hemopexin, haptoglobin, and biliverdin reductase. Similarly, kinin- and angiotensin-generating/degrading peptidases, such as kallikreins, neprilysin, plasmin, dipeptidyl peptidase IV, cathepsin D, kininogen, and neutral, basic, glutamyl, and acidic aminopeptidases, were also up-regulated in urine. CONCLUSIONS: L. obliqua envenomation induced tubular and glomerular injury, probably involving heme/hemoglobin toxicity and an imbalance in the kinin/angiotensin generating/degrading system.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Aminopeptidases/metabolismo , Venenos de Artrópodes/toxicidade , Hemoglobinúria , Lepidópteros , Proteômica , Aminopeptidases/química , Animais , Heme , Hemoglobinas , Larva/fisiologia , Masculino , Ratos , Ratos Wistar , Urinálise , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...