Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 204: 111038, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739674

RESUMO

Soil management using fertilizers can modify soil chemical, biochemical and biological properties, including the concentration of trace-elements as cadmium (Cd), chromium (Cd) and nickel (Ni). Bacterial isolates from Cd, Cr, and Ni-contaminated soil were evaluated for some characteristics for their use in bioremediation. Isolates (592) were obtained from soil samples (19) of three areas used in three maize cultivation systems: no-tillage and conventional tillage with the application of mineral fertilizers; minimum tillage with the application of sewage sludge. Four isolates were resistant to Cr3+ (3.06 mmol dm-3) and Cd2+ (2.92 mmol dm-3). One isolate was resistant to the three metals at 0.95 mmol dm-3. All isolates developed in a medium of Cd2+, Cr3+ and Ni2+ at 0.5 mmol dm-3, and removed Cd2+ (17-33%) and Cr6+ (60-70%). They were identified by sequencing of the gene 16S rRNA, as bacteria of the genera Paenibacillus, Burkholderia, Ensifer, and two Cupriavidus. One of the Cupriavidus isolate was able to remove 60% of Cr6+ from the culture medium and showed high indole acetic acid production capacity. We evaluated it in a microbe-plant system that could potentially be deployed in bioremediation by removing toxic metals from contaminated soil.


Assuntos
Bactérias/metabolismo , Cádmio/metabolismo , Cromo/metabolismo , Níquel/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Agricultura , Bactérias/isolamento & purificação , Biodegradação Ambiental , Brasil , Clima Tropical
2.
Chemosphere ; 185: 344-350, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28709039

RESUMO

Soil contamination may result from the inadequate disposal of substances with polluting potential or prolonged agricultural use. Therefore, cadmium (Cd), chromium (Cr) and nickel (Ni) concentrations were assessed in a Eutroferric Red Oxisol under a no-tillage farming system with mineral fertilizer applications, a conventional tillage system with mineral fertilizer application and a conventional tillage system with sewage sludge application in an area used for agriculture for more than 80 years. We evaluated the spatial distributions of these elements in the experimental area and the effect of the different management practices on the soil retention of these metals. The concentrations of metals extracted from 422 soil samples by open-system digestion with HNO3, H2O2 and HCl were assessed by flame atomic absorption spectroscopy. The pH and soil organic matter were also assessed, and spatial distribution maps were designed. The mean concentrations of Cd, Cr and Ni (1.0, 50 and 14 mg kg-1, respectively) in the native forest were higher than the reference values (100, 25 and 8% greater, respectively) in Brazilian legislation, indicating that the source material was the determining factor of the high metal concentrations in the study soils. Soil management with sewage sludge was the major contributor to the accumulation of Cd and Ni, whereas Cr concentration did not vary with management type. Approximately 0.3, 12 and 16% of the experimental area is contaminated with Ni, Cd and Cr, respectively, because their concentrations exceeded the values for alertness or prevention in Brazilian legislation.


Assuntos
Agricultura/métodos , Metais Pesados/análise , Poluentes do Solo/análise , Brasil , Cádmio/análise , Cromo/análise , Monitoramento Ambiental , Fertilizantes , Níquel/análise , Esgotos/química , Solo/química , Análise Espaço-Temporal , Espectrofotometria Atômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...