Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; : e2400111, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567626

RESUMO

Human mesenchymal stromal cell (hMSC) manufacturing requires the production of large numbers of therapeutically potent cells. Licensing with soluble cytokines improves hMSC therapeutic potency by enhancing secretion of immunoactive factors but typically decreases proliferative ability. Soft hydrogels, however, have shown promise for boosting immunomodulatory potential, which may compensate for decreased proliferation. Here, hydrogels are cross-linked with peptoids of different secondary structures to generate substrates of various bulk stiffnesses but fixed network connectivity. Secretions of interleukin 6, monocyte chemoattractive protein-1, macrophage colony-stimulating factor, and vascular endothelial growth factor are shown to depend on hydrogel stiffness in the presence of interferon gamma (IFN-γ) supplementation, with soft substrates further improving secretion. The immunological function of these secreted cytokines is then investigated via coculture of hMSCs seeded on hydrogels with primary peripheral blood mononuclear cells (PBMCs) in the presence and absence of IFN-γ. Cocultures with hMSCs seeded on softer hydrogels show decreased PBMC proliferation with IFN-γ. To probe possible signaling pathways, immunofluorescent studies probe the nuclear factor kappa B pathway and demonstrate that IFN-γ supplementation and softer hydrogel mechanics lead to higher activation of this pathway. Overall, these studies may allow for production of more efficacious therapeutic hMSCs in the presence of IFN-γ.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37924292

RESUMO

Hydrogels are cross-linked three-dimensional polymer networks that have tissue-like properties. Dynamic covalent bonds (DCB) can be utilized as hydrogel cross-links to impart injectability, self-healing ability, and stimuli responsiveness to these materials. In our research, we utilized dynamic thiol-Michael bonds as cross-links in poly(ethylene glycol) (PEG)-based hydrogels. Because the equilibrium of the reversible, exothermic thiol-Michael reaction can be modulated by temperature, we investigated the possibility of using thermal and photothermal stimuli to modulate the gel-to-sol transition of these materials with the aim of developing an on-demand pulsatile cargo release system. For this purpose, we incorporated poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles within the hydrogel to facilitate photothermal modulation using near-infrared light. PEDOT nanoparticles of 50 nm in diameter and with strong near-infrared absorption were prepared by oxidative emulsion polymerization. We then used Michael addition of thiol-ene pairs from 4-arm PEG-thiol (PEG-SH) and 4-arm PEG-benzylcyanoacetamide (PEG-BCA) to form dynamically cross-linked hydrogels. PEDOT nanoparticles were entrapped in situ to form Gel/PEDOT composites. Rheology and inverted tube test studies showed that the gel-to-sol transition occurred at 45-50 °C for 5 wt % gels and that this transition could be tailored by varying the wt % of the polymer precursors. The hydrogels were found to be capable of self-healing and being injected with a clinically relevant injection force. Bovine serum albumin-fluorescein isothiocyanate (BSA-FITC), a fluorescently labeled protein, was then loaded into the Gel/PEDOT as a therapeutic mimic. Increased release of BSA-FITC upon direct thermal stimulation and photothermal stimulation with an 808 nm laser was observed. Pulsatile release of BSA-FITC over seven cycles was demonstrated. MTS and live-dead assays demonstrated that Gel/PEDOT was cytocompatible in MDA-MB-231 breast cancer and 3T3 fibroblast cell lines. Further studies demonstrated that the encapsulation and laser-triggered release of the chemotherapeutic agent doxorubicin (DOX) could also be achieved. Altogether, this work advances our understanding of the temperature-dependent behavior of a dynamic covalent hydrogel, Gel/PEDOT, and leverages that understanding for application as a photothermally responsive biomaterial for controlled release.

3.
Mol Syst Des Eng ; 8(1): 92-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37123435

RESUMO

Due to their N-substitution, peptoids are generally regarded as resistant to biological degradation, such as enzymatic and hydrolytic mechanisms. This stability is an especially attractive feature for therapeutic development and is a selling point of many previous biological studies. However, another key mode of degradation remains to be fully explored, namely oxidative degradation mediated by reactive oxygen and nitrogen species (ROS/RNS). ROS and RNS are biologically relevant in numerous contexts where biomaterials may be present, thus, improving understanding of peptoid oxidative susceptibility is crucial to exploit their full potential in the biomaterials field, where an oxidatively-labile but enzymatically stable molecule can offer attractive properties. Toward this end, we demonstrate a fundamental characterization of sequence-defined peptoid chains in the presence of chemically generated ROS, as compared to ROS-susceptible peptides such as proline and lysine oligomers. Lysine oligomers showed the fastest degradation rates to ROS and the enzyme trypsin. Peptoids degraded in metal catalyzed oxidation conditions at rates on par with poly(prolines), while maintaining resistance to enzymatic degradation. Furthermore, lysine-containing peptide-peptoid hybrid molecules showed tunability in both ROS-mediated and enzyme-mediated degradation, with rates intermediate to lysine and peptoid oligomers. When lysine-mimetic side-chains were incorporated into a peptoid backbone, the rate of degradation matched that of the lysine peptide oligomers, but remained resistant to enzymatic degradation. These results expand understanding of peptoid degradation to oxidative and enzymatic mechanisms, and demonstrate the potential for peptoid incorporation into materials where selectivity towards oxidative degradation is necessary, or directed enzymatic susceptibility is desired.

4.
Biomacromolecules ; 24(3): 1475-1482, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780271

RESUMO

Through the postpolymerization modification of poly(allyl glycidyl ether) (PAGE), a functionalizable polyether with a poly(ethylene oxide) backbone, we engineered a new class of highly tunable polyampholyte materials. These polyampholytes can be synthesized to have several useful properties, including low cytotoxicity and pH-responsive coacervate formation. In this study, we used PAGE-based polyampholytes (PAGE-PAs) for the cryopreservation of mammalian cell suspensions. Typically, dimethyl sulfoxide (DMSO) is the cryoprotectant used for preserving mammalian cells, but DMSO suffers from key drawbacks including toxicity and difficult post-thaw removal that motivates the development of new materials and methods. Toxicity and post-thaw survival were dependent on PAGE-PA composition with the highest immediate post-thaw survival for normal human dermal fibroblasts occurring for the least toxic PAGE-PA at a cation/anion ratio of 35:65. With low toxicity, the PAGE-PA concentration could be increased in order to increase immediate post-thaw survival of the immortalized mouse embryonic fibroblasts (NIH/3T3). While immediate post-thaw viability was achieved using only the PAGE-PAs, long-term cell survival was low, highlighting the challenges involved with the design of cryoprotective polyampholytes. An environment utilizing both PAGE-PAs and DMSO in a cryoprotective solution offered promising post-thaw viabilities exceeding 70%, with long-term metabolic activities comparable to unfrozen cells.


Assuntos
Dimetil Sulfóxido , Fibroblastos , Animais , Camundongos , Humanos , Sobrevivência Celular , Criopreservação/métodos , Poli A , Mamíferos
5.
Chem Commun (Camb) ; 59(12): 1685-1688, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692178

RESUMO

The utility of active proteases as biomarkers is often limited by overlapping substrate specificity. Here, this feature is leveraged to develop a quantitative pattern-recognition sensing system driven by the degradation patterns of peptide-peptoid hybrid substrates to classify proteases and estimate their concentration by multivariate data analysis.


Assuntos
Peptídeo Hidrolases , Peptoides , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Especificidade por Substrato
6.
Acta Biomater ; 155: 258-270, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423819

RESUMO

Synthetic hydrogels are attractive platforms due in part to their highly tunable mechanics, which impact cell behavior and secretory profile. These mechanics are often controlled by altering the number of crosslinks or the total polymer concentration in the gel, leading to structure-property relationships that inherently couple network connectivity to the overall modulus. In contrast, the native extracellular matrix (ECM) contains structured biopolymers that enable stiff gels even at low polymer content, facilitating 3D cell culture and permeability of soluble factors. To mimic the hierarchical order of natural ECM, this work describes a synthetic hydrogel system in which mechanics are tuned using the structure of sequence-defined peptoid crosslinkers, while fixing network connectivity. Peptoid crosslinkers with different secondary structures are investigated: 1) a helical, molecularly stiff peptoid, 2) a non-helical, less stiff peptoid, and 3) an unstructured, relatively flexible peptoid. Bulk hydrogel storage modulus increases when crosslinkers of higher chain stiffness are used. In-vitro studies assess the viability, proliferation, cell morphology, and immunomodulatory activity of human mesenchymal stem cells (hMSCs) on each hydrogel substrate. Matrix mechanics regulate the morphology of hMSCs on the developed substrates, and all of the hydrogels studied upregulate IDO production over culture on TCP. Softer substrates further this upregulation to a plateau. Overall, this system offers a biomimetic strategy for decoupling hydrogel storage modulus from network connectivity, enabling systematic study of biomaterial properties on hMSC behavior and enhancement of cellular functionality for therapeutic applications. STATEMENT OF SIGNIFICANCE: Various strategies to tune hydrogel mechanics have been developed to control human mesenchymal stem cell (hMSC) behavior and regulate their immunomodulatory potential. However, these strategies typically couple mechanics to network connectivity, which in turn changes other hydrogel properties such as permeability that may have unintended effects on hMSC behavior. This work presents a strategy to tune hydrogel mechanics using crosslinkers with different secondary structure and molecular rigidity. This strategy successfully decouples hydrogel moduli from crosslinker stoichiometry and mimics the hierarchical nature of the native extracellular matrix. The moduli of the developed hydrogels led to significant impacts on hMSC morphology and proliferation, and increased immunomodulatory potential, indicating that molecular rigidity is a promising avenue to control engineered ECM mechanics for therapeutic applications.


Assuntos
Ácido Hialurônico , Peptoides , Humanos , Materiais Biocompatíveis/farmacologia , Ácido Hialurônico/farmacologia , Hidrogéis/farmacologia , Hidrogéis/química , Polímeros , Células-Tronco
7.
Biomacromolecules ; 23(11): 4909-4923, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36269900

RESUMO

Proteases, especially MMPs, are attractive biomarkers given their central role in both physiological and pathological processes. Distinguishing MMP activity with degradable substrates, however, is a difficult task due to overlapping substrate specificity profiles. Here, we developed a system of peptomers (peptide-peptoid hybrids) to probe the impact of non-natural residues on MMP specificity for an MMP peptide consensus sequence. Peptoids are non-natural, N-substituted glycines with a large side-chain diversity. Given the presence of a hallmark proline residue in the P3 position of MMP consensus sequences, we hypothesized that peptoids may offer N-substituted alternatives to generate differential interactions with MMPs. To investigate this hypothesis, peptomer substrates were exposed to five different MMPs, as well as bacterial collagenase, and monitored by fluorescence resonance energy transfer and liquid chromatography-mass spectrometry to determine the rate of cleavage and the composition of degraded fragments, respectively. We found that peptoid residues are well tolerated in the P3 and P3' substrate sites and that the identity of the peptoid in these sites displays a moderate influence on the rate of cleavage. However, peptoid residues were even better tolerated in the P1 substrate site where activity was more strongly correlated with side-chain identity than side-chain position. All MMPs explored demonstrated similar trends in specificity for the peptomers but exhibited different degrees of variability in proteolytic rate. These kinetic profiles served as "fingerprints" for the proteases and yielded separation by multivariate data analysis. To further demonstrate the practical application of this tunability in degradation kinetics, peptomer substrates were tethered into hydrogels and released over distinct timescales. Overall, this work represents a significant step toward the design of probes that maximize differential MMP behavior and presents design rules to tune degradation kinetics with peptoid substitutions, which has promising implications for diagnostic and prognostic applications using array-based sensors.


Assuntos
Peptoides , Peptoides/química , Peptídeos/química , Sequência de Aminoácidos , Metaloproteases/metabolismo , Peptídeo Hidrolases/metabolismo
8.
PLoS One ; 17(8): e0272169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35917312

RESUMO

Microneedle patches are a promising source for transdermal diffusion of macromolecules and are designed to painlessly penetrate the skin. In this study, a biodegradable chitosan microneedle patch to deliver meloxicam for managing pain in cattle was tested. The potential of reuse of the polymeric solution to fabricate the patches, optimization of fabrication, morphological analysis of the microneedle patch and analysis of preservation of the chemical composition after sterilization were evaluated. In-vitro analysis consisted of studying in-vitro penetration mechanical properties, compression testing analysis of microneedle patch, and in-vitro drug release analysis. In-vivo studies were performed to analyze the dissolution capability of the microneedle patch. Results regarding the physical characteristics, chemical composition, and mechanical properties confirmed that rheological properties of the chitosan solution, present significant differences over time, demonstrating that reusing the solution on the fourth day results in failure patches. Morphological characteristics and chemical composition studies revealed that the process of sterilization (ethylene oxide gas) needed for implanting the patches into the skin did not affect the properties of microneedle patches. In-vitro studies showed that approximately 33.02 ± 3.88% of the meloxicam was released over 7 days. A full penetration of the microneedles into the skin can be obtained by applying approximately 3.2 N. In-vivo studies demonstrated that microneedle patches were capable of swelling and dissolving, exhibiting a dissolution percentage of more than 50% of the original height of microneedle after 7 days. No abnormal tissue, swelling, or inflammation was observed in the implanted area. The results of this work show that chitosan biodegradable microneedle patches may be useful to deliver meloxicam to improve pain management of cattle with positive effects for commercial manufacturing.


Assuntos
Quitosana , Administração Cutânea , Animais , Bovinos , Quitosana/química , Sistemas de Liberação de Medicamentos/métodos , Meloxicam/farmacologia , Agulhas , Dor/tratamento farmacológico , Dor/veterinária , Manejo da Dor , Pele , Adesivo Transdérmico
9.
Sci Rep ; 12(1): 12239, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851602

RESUMO

Myofibroblasts are a highly secretory and contractile cell phenotype that are predominant in wound healing and fibrotic disease. Traditionally, myofibroblasts are identified by the de novo expression and assembly of alpha-smooth muscle actin stress fibers, leading to a binary classification: "activated" or "quiescent (non-activated)". More recently, however, myofibroblast activation has been considered on a continuous spectrum, but there is no established method to quantify the position of a cell on this spectrum. To this end, we developed a strategy based on microscopy imaging and machine learning methods to quantify myofibroblast activation in vitro on a continuous scale. We first measured morphological features of over 1000 individual cardiac fibroblasts and found that these features provide sufficient information to predict activation state. We next used dimensionality reduction techniques and self-supervised machine learning to create a continuous scale of activation based on features extracted from microscopy images. Lastly, we compared our findings for mechanically activated cardiac fibroblasts to a distribution of cell phenotypes generated from transcriptomic data using single-cell RNA sequencing. Altogether, these results demonstrate a continuous spectrum of myofibroblast activation and provide an imaging-based strategy to quantify the position of a cell on that spectrum.


Assuntos
Actinas , Miofibroblastos , Actinas/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Cicatrização/fisiologia
10.
ACS Polym Au ; 2(2): 129-136, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35445216

RESUMO

Hydrogels cross-linked with dynamic covalent bonds exhibit time-dependent properties, making them an advantageous platform for applications ranging from biomaterials to self-healing networks. However, the relationship between the cross-link exchange kinetics, material properties, and stability of these platforms is not fully understood, especially upon addition of external stimuli. In this work, pH was used as a handle to manipulate cross-link exchange kinetics and control the resulting hydrogel mechanics and stability in a physiologically relevant window. Poly(ethylene glycol)-based hydrogels were cross-linked with a reversible thia-Michael addition reaction in aqueous buffer between pH 3 and pH 7. The rate constants of bond exchange and equilibrium constants were determined for each pH value, and these data were correlated with the resulting mechanical profiles of the bulk hydrogels. With increasing pH, both the forward and the reverse rate constants increased, while the equilibrium constant decreased. These changes led to faster stress relaxation and less stiff hydrogels at more basic pH values. The elevated pH values also led to an increased mass loss and a faster rate of release of an encapsulated model bovine serum albumin fluorescent protein. The connection between the kinetics, mechanics, and molecular release profiles provides important insight into the structure-property relationships of dynamic covalent hydrogels, and this system offers a promising platform for controlled release between physiologically relevant pH values.

11.
Mater Today Bio ; 13: 100194, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005599

RESUMO

Human mesenchymal stromal cells (hMSCs) are multipotent cells that have been proposed for cell therapies due to their immunosuppressive capacity that can be enhanced in the presence of interferon-gamma (IFN-γ). In this study, multilayers of heparin (HEP) and collagen (COL) (HEP/COL) were used as a bioactive surface to enhance the immunomodulatory activity of hMSCs using soluble IFN-γ. Multilayers were formed, via layer-by-layer assembly, varying the final layer between COL and HEP and supplemented with IFN-γ in the culture medium. We evaluated the viability, adhesion, real-time growth, differentiation, and immunomodulatory activity of hMSCs on (HEP/COL) multilayers. HMSCs viability, adhesion, and growth were superior when cultured on (HEP/COL) multilayers compared to tissue culture plastic. We also confirmed that hMSCs osteogenic and adipogenic differentiation remained unaffected when cultured in (HEP/COL) multilayers in the presence of IFN-γ. We measured the immunomodulatory activity of hMSCs by measuring the level of indoleamine 2,3-dioxygenase (IDO) expression. IDO expression was higher on (HEP/COL) multilayers treated with IFN-γ. Lastly, we evaluated the suppression of peripheral blood mononuclear cell (PBMC) proliferation when co-cultured with hMSCs on (HEP/COL) multilayers with IFN-γ. hMSCs cultured in (HEP/COL) multilayers in the presence of soluble IFN-γ have a greater capacity to suppress PBMC proliferation. Altogether, (HEP/COL) multilayers with IFN-γ in culture medium provides a potent means of enhancing and sustaining immunomodulatory activity to control hMSCs immunomodulation.

12.
Cell Rep Phys Sci ; 3(12)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37496708

RESUMO

The formation of benign polymer scaffolds in water using green-light-reactive photocages is described. These efforts pave an avenue toward the fabrication of synthetic scaffolds that can facilitate the study of cellular events for disease diagnosis and treatment. First, a series of boron dipyrromethene (BODIPY) photocages with nitrogen-containing nucleophiles were examined to determine structure-reactivity relationships, which resulted in a >1,000× increase in uncaging yield. Subsequently, photoinduced hydrogel formation in 90 wt % water was accomplished via biorthogonal carbonyl condensation using hydrophilic polymer scaffolds separately containing BODIPY photocages and ortho-phthalaldehyde (OPA) moieties. Spatiotemporal control is demonstrated with light on/off experiments to modulate gel stiffness and masking to provide <100 µm features. Biocompatability of the method was shown through pre-/post-crosslinking cell viability studies. Short term, these studies are anticipated to guide translation to emergent additive manufacturing technology, which, longer term, will enable the development of 3D cell cultures for tissue engineering applications.

13.
Sci Rep ; 11(1): 21855, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34750438

RESUMO

Cardiac fibrosis is a pathological process characterized by excessive tissue deposition, matrix remodeling, and tissue stiffening, which eventually leads to organ failure. On a cellular level, the development of fibrosis is associated with the activation of cardiac fibroblasts into myofibroblasts, a highly contractile and secretory phenotype. Myofibroblasts are commonly identified in vitro by the de novo assembly of alpha-smooth muscle actin stress fibers; however, there are few methods to automate stress fiber identification, which can lead to subjectivity and tedium in the process. To address this limitation, we present a computer vision model to classify and segment cells containing alpha-smooth muscle actin stress fibers into 2 classes (α-SMA SF+ and α-SMA SF-), with a high degree of accuracy (cell accuracy: 77%, F1 score 0.79). The model combines standard image processing methods with deep learning techniques to achieve semantic segmentation of the different cell phenotypes. We apply this model to cardiac fibroblasts cultured on hyaluronic acid-based hydrogels of various moduli to induce alpha-smooth muscle actin stress fiber formation. The model successfully predicts the same trends in stress fiber identification as obtained with a manual analysis. Taken together, this work demonstrates a process to automate stress fiber identification in in vitro fibrotic models, thereby increasing reproducibility in fibroblast phenotypic characterization.


Assuntos
Actinas/metabolismo , Aprendizado Profundo , Miocárdio/citologia , Miocárdio/metabolismo , Fibras de Estresse/metabolismo , Inteligência Artificial , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Técnicas de Cultura de Células , Células Cultivadas , Elasticidade , Fibroblastos/metabolismo , Humanos , Hidrogéis , Processamento de Imagem Assistida por Computador , Modelos Cardiovasculares , Miofibroblastos/classificação , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fibras de Estresse/classificação , Fibras de Estresse/patologia , Propriedades de Superfície
14.
Artigo em Inglês | MEDLINE | ID: mdl-35822083

RESUMO

Excessive bleeding-or hemorrhage-causes millions of civilian and non-civilian casualties every year. Additionally, wound sequelae, such as infections, are a significant source of chronic morbidity, even if the initial bleeding is successfully stopped. To treat acute and chronic wounds, numerous wound healing materials have been identified, tested, and adopted. Among them are topical dressings, such as gauzes, as well as natural and biomimetic materials. However, none of these materials successfully mimic the complex and dynamic properties of the body's own wound healing material: the blood clot. Specifically, blood clots exhibit complex mechanical and biochemical properties that vary across spatial and temporal scales to guide the wound healing response, which make them the ideal wound healing material. In this manuscript, we review blood clots' complex mechanical and biochemical properties, review current wound healing materials, and identify opportunities where new materials can provide additional functionality, with a specific focus on hydrogels. We highlight recent developments in synthetic hydrogels that make them capable of mimicking a larger subset of blood clot features: as plugs and as stimuli for tissue repair. We conclude that future hydrogel materials designed to mimic blood clot biochemistry, mechanics, and architecture can be combined with exciting platelet-like particles to serve as hemostats that also promote the biological wound healing response. Thus, we believe synthetic hydrogels are ideal candidates to address the clear need for better wound healing materials.

15.
ACS Biomater Sci Eng ; 6(3): 1375-1386, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33313392

RESUMO

Enhancing materials with the qualities of living systems, including sensing, computation, and adaptation, is an important challenge in designing next-generation technologies. Living materials address this challenge by incorporating live cells as actuating components that control material function. For abiotic materials, this requires new methods that couple genetic and metabolic processes to material properties. Toward this goal, we demonstrate that extracellular electron transfer (EET) from Shewanella oneidensis can be leveraged to control radical cross-linking of a methacrylate-functionalized hyaluronic acid hydrogel. Cross-linking rates and hydrogel mechanics, specifically storage modulus, were dependent on various chemical and biological factors, including S. oneidensis genotype. Bacteria remained viable and metabolically active in the networks for a least 1 week, while cell tracking revealed that EET genes also encode control over hydrogel microstructure. Moreover, construction of an inducible gene circuit allowed transcriptional control of storage modulus and cross-linking rate via the tailored expression of a key electron transfer protein, MtrC. Finally, we quantitatively modeled hydrogel stiffness as a function of steady-state mtrC expression and generalized this result by demonstrating the strong relationship between relative gene expression and material properties. This general mechanism for radical cross-linking provides a foundation for programming the form and function of synthetic materials through genetic control over extracellular electron transfer.


Assuntos
Hidrogéis , Shewanella , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Shewanella/genética
16.
Biomacromolecules ; 21(8): 3047-3055, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32649830

RESUMO

Under the right conditions, some biological systems can maintain high viability after being frozen and thawed, but many others (e.g., organs and many mammalian cells) cannot. To increase the rates of post-thaw viability and widen the library of living cells and tissues that can be stored frozen, an improved understanding of the mode of action of polymeric cryoprotectants is required. Here, we present a polymeric cryoprotectant, poly(methyl glycidyl sulfoxide) (PMGS), that achieved higher post-thaw viability for fibroblast cells than its small-molecule analogue dimethyl sulfoxide. By limiting the amount of water that freezes and facilitating cellular dehydration after ice nucleation, PMGS mitigates the mechanical and osmotic stresses that the freezing of water imparts on cells and facilitates higher-temperature vitrification of the remaining unfrozen volume. The development of PMGS advances a fundamental physical understanding of polymer-mediated cryopreservation, which enables new material design for long-term preservation of complex cellular networks and tissue.


Assuntos
Criopreservação , Polímeros , Animais , Crioprotetores/farmacologia , Dimetil Sulfóxido/farmacologia , Congelamento , Vitrificação
17.
J Mater Chem B ; 8(31): 6925-6933, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32436556

RESUMO

The native extracellular matrix (ECM) is composed of hierarchically structured biopolymers containing precise monomer sequences and chain shapes to yield bioactivity. Recapitulating this structure in synthetic hydrogels is of particular interest for tissue engineering and in vitro disease models to accurately mimic biological microenvironments. However, despite extensive research on hydrogels, it remains a challenge to recapitulate the hierarchical structure of native ECM with completely synthetic hydrogel platforms. Toward this end, this work presents a synthetic hydrogel system using commercially available poly(ethylene glycol) macromers with sequence-defined poly(N-substituted glycines) (peptoids) as crosslinkers. We demonstrate that bulk hydrogel mechanics, specifically as shear storage modulus, can be controlled by altering peptoid sequence and structure. Notably, the helical peptoid sequence investigated here increases the storage modulus of the resulting hydrogels with increasing helical content and chain length, in a fashion similar to helical peptide-crosslinked hydrogels. In addition, the resulting hydrogels are shown to be hydrolytically and enzymatically stable due to the N-substituted peptidomimetic backbone of the crosslinkers. We further demonstrate the potential utility of these peptoid-crosslinked hydrogels as a viable cell culture platform using seeded human dermal fibroblasts in comparison to peptide-crosslinked hydrogels as a control. Taken together, our system offers a strategy toward ECM mimics that replicate the hierarchy of biological matrices with completely synthetic, sequence-defined molecules.


Assuntos
Hidrogéis/química , Peptídeos/química , Sequência de Aminoácidos , Sobrevivência Celular/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Humanos , Peptídeos/farmacologia , Polietilenoglicóis/química , Conformação Proteica em alfa-Hélice
18.
J Mater Chem B ; 8(16): 3460-3487, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32159202

RESUMO

Development of multi-functional materials and biosensors that can achieve an in situ response designed by the user is a current need in the biomaterials field, especially in complex biological environments, such as inflammation, where multiple enzymatic and oxidative signals are present. In the past decade, there has been extensive research and development of materials chemistries for detecting and monitoring enzymatic activity, as well as for releasing therapeutic and diagnostic agents in regions undergoing oxidative stress. However, there has been limited development of materials in the context of enzymatic and oxidative triggers together, despite their closely tied and overlapping mechanisms. With research focusing on enzymatically and oxidatively triggered materials separately, these systems may be inadequate in monitoring the complexity of inflammatory environments, thus limiting in vivo translatability and diagnostic accuracy. The intention of this review is to highlight a variety of enzymatically and oxidatively triggered materials chemistries to draw attention to the range of synthetic tunability available for the construction of novel biosensors with a spectrum of programmed responses. We focus our discussion on several types of macromolecular sensors, generally classified by the causative material response driving ultimate signal detection. This includes sensing based on degradative processes, conformational changes, supramolecular assembly/disassembly, and nanomaterial interactions, among others. We see each of these classes providing valuable tools toward coalescing current gaps in the biosensing field regarding specificity, selectivity, sensitivity, and flexibility in application. Additionally, by considering the materials chemistry of enzymatically and oxidatively triggered biomaterials in tandem, we hope to encourage synthesis of new biosensors that capitalize on their synergistic roles and overlapping mechanisms in inflammatory environments for applications in disease diagnosis and monitoring.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Enzimas/análise , Animais , Materiais Biocompatíveis/síntese química , Técnicas Biossensoriais/instrumentação , Enzimas/metabolismo , Desenho de Equipamento , Humanos , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
20.
Nanoscale Adv ; 2(9): 3849-3857, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36132778

RESUMO

Identifying pro-inflammatory macrophages (M1) is of immense importance to diagnose, monitor, and treat various pathologies. In addition, adoptive cell therapies, where harvested cells are isolated, modified to express an M1-like phenotype, then re-implanted to the patient, are also becoming more prevalent to treat diseases such as cancer. In a step toward identifying, labeling, and monitoring macrophage phenotype for adoptive cell therapies, we developed a reactive oxygen species (ROS)-sensitive, gold nanoparticle (AuNP) that fluorescently labels M1 macrophages. AuNPs are electrostatically coated with a proteolysis resistant, fluorescein isothiocyanate-conjugated, poly-d-lysine (PDL-FITC) that is susceptible to backbone cleavage by ROS. When PDL-FITC is bound to AuNPs, fluorescence is quenched via a combination of nanoparticle surface (NSET) and Forster resonance (FRET) energy transfer mechanisms. Upon ROS-induced cleavage of PDL-FITC, up to a 7-fold change in fluorescence is demonstrated. PDL-FITC AuNPs were loaded into RAW 264.7 macrophages (RAWs) and primary bone marrow- derived macrophages (BMDMs) prior to in vitro polarization. For both cell types, detectable differences in intracellular fluorescence were observed between M1 polarized and non-stimulated (M0) control groups after 24 h using both confocal imaging and flow cytometry. PDL-FITC AuNPs can potentially be useful in identifying M1 macrophages within diverse cell populations and provide longitudinal macrophage response data to external cues.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...