Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(10)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36290041

RESUMO

Fosfomycin is currently a viable option against urinary tract infections, particularly against extended-spectrum ß-lactamases (ESBL)-producing E. coli, due to its unique mechanism of action and its low resistance among bacteria. The objective of this study was to investigate two of the three most common mechanisms of resistance against this antibiotic among 350 ESBL-producing E. coli strains isolated from the urine of Mexican patients. The prevalence of fosfomycin resistance in our study was 10.9% (38/350). Of all resistant isolates analyzed, 23 (60.5%) were identified as fos-producing organisms, with 14 strains carrying fosA3 and 9, fosA1. Additionally, 11 (28.9%) fosfomycin-resistant isolates presented resistance due to impaired antibiotic transport and 8 (21.0%) both mechanisms. No resistance mechanism investigated in the study was found on 12 strains. All 38 confirmed ESBL-producing isolates carried a blaCTX-M subtype, 36 (94.5%) belonged to the O25b-ST131 clone, and all of them were able to transfer the fosfomycin resistance trait to recipient strains horizontally. This is the first study in Mexico demonstrating a plasmid-mediated fosfomycin resistance mechanism among clinical E. coli strains. Since our results suggest a strong association among fos and blaCTX-M genes and ST131 clones in uropathogenic E. coli, plasmid-mediated fosfomycin resistance should be closely monitored.

2.
Microb Drug Resist ; 26(11): 1372-1382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32027229

RESUMO

Background: Surveillance of antimicrobial resistance (AMR) requires an international approach with national and local strategies. Our aim was to summarize a retrospective 10-year report of antibiotic resistance of gram-positive and gram-negative bacteria in Mexico. Methods: A total of 46 centers from 22 states of Mexico participated. Databases of AMR from January 2009 to December 2018 were included for most species. The 10-year period was divided into five 2-year periods. Results: For Staphylococcus aureus, a decrease in resistance in all specimens was observed for erythromycin and oxacillin (p < 0.0001 for each). For Enterobacter spp., resistance to meropenem increased for urine specimens (p = 0.0042). For Klebsiella spp., increased drug resistance in specimens collected from blood was observed for trimethoprim/sulfamethoxazole, gentamicin, tobramycin (p < 0.0001 for each), meropenem (p = 0.0014), and aztreonam (p = 0.0030). For Acinetobacter baumannii complex, high drug resistance was detected for almost all antibiotics, including carbapenems, except for tobramycin, which showed decreased resistance for urine, respiratory, and blood isolates (p < 0.0001 for each), and for amikacin, which showed a decrease in resistance in urine specimens (p = 0.0002). An increase in resistance to cefepime was found for urine, respiratory, and blood specimens (p < 0.0001 for each). For Pseudomonas aeruginosa, aztreonam resistance increased for isolates recovered from blood (p = 0.0001). Conclusion: This laboratory-based surveillance of antibiotic resistance shows that resistance is increasing for some antibiotics in different bacterial species in Mexico and highlights the need for continuous monitoring of antibiotic resistance.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Humanos , México , Testes de Sensibilidade Microbiana/métodos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...