Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 33(11): e4380, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681670

RESUMO

Increased pulmonary lactate production is correlated with severity of lung injury and outcome in acute respiratory distress syndrome (ARDS) patients. This study was conducted to investigate the relative contributions of inflammation and hypoxia to the lung's metabolic shift to glycolysis in an experimental animal model of ARDS using hyperpolarized (HP) 13 C MRI. Fifty-three intubated and mechanically ventilated male rats were imaged using HP 13 C MRI before, and 1, 2.5 and 4 hours after saline (sham) or hydrochloric acid (HCl; 0.5 ml/kg) instillation in the trachea, followed by protective and nonprotective mechanical ventilation (HCl-PEEP and HCl-ZEEP) or the start of moderate or severe hypoxia (Hyp90 and Hyp75 groups). Pulmonary and cardiac HP lactate-to-pyruvate ratios were compared among groups for different time points. Postmortem histology and immunofluorescence were used to assess lung injury severity and quantify the expression of innate inflammatory markers and local tissue hypoxia. HP pulmonary lactate-to-pyruvate ratio progressively increased in rats with lung injury and moderate hypoxia (HCl-ZEEP), with no significant change in pulmonary lactate-to-pyruvate ratio in noninjured but moderately hypoxic rats (Hyp90). Pulmonary lactate-to-pyruvate ratio was elevated in otherwise healthy lung tissue only in severe systemic hypoxia (Hyp75 group). ex vivo histological and immunopathological assessment further confirmed the link between elevated glycolysis and the recruitment into and presence of activated neutrophils in injured lungs. HP lactate-to-pyruvate ratio is elevated in injured lungs predominantly as a result of increased glycolysis in activated inflammatory cells, but can also increase due to severe inflammation-induced hypoxia.


Assuntos
Lesão Pulmonar/metabolismo , Pulmão/metabolismo , Pneumonia/metabolismo , Ácido Pirúvico/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Animais , Modelos Animais de Doenças , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Ácido Láctico/metabolismo , Lesão Pulmonar/complicações , Masculino , Peroxidase/metabolismo , Pneumonia/complicações , Ratos Sprague-Dawley , Síndrome do Desconforto Respiratório/complicações
2.
Proc Natl Acad Sci U S A ; 116(34): 17045-17050, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31391309

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is a transmembrane receptor that is linked to immune modulation and tissue regeneration. Here, we show that TNFR2 essentially promotes long-term pain resolution independently of sex. Genetic deletion of TNFR2 resulted in impaired neuronal regeneration and chronic nonresolving pain after chronic constriction injury (CCI). Further, pharmacological activation of TNFR2 using the TNFR2 agonist EHD2-sc-mTNFR2 in mice with chronic neuropathic pain promoted long-lasting pain recovery. TNFR2 agonist treatment reduced neuronal injury, alleviated peripheral and central inflammation, and promoted repolarization of central nervous system (CNS)-infiltrating myeloid cells into an antiinflammatory/reparative phenotype. Depletion of regulatory T cells (Tregs) delayed spontaneous pain recovery and abolished the therapeutic effect of EHD2-sc-mTNFR2 This study therefore reveals a function of TNFR2 in neuropathic pain recovery and demonstrates that both TNFR2 signaling and Tregs are essential for pain recovery after CCI. Therefore, therapeutic strategies based on the concept of enhancing TNFR2 signaling could be developed into a nonopioid therapy for the treatment of chronic neuropathic pain.


Assuntos
Dor Crônica/imunologia , Neuralgia/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Dor Crônica/genética , Dor Crônica/patologia , Dor Crônica/terapia , Feminino , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Depleção Linfocítica , Masculino , Camundongos , Camundongos Knockout , Neuralgia/genética , Neuralgia/patologia , Neuralgia/terapia , Receptores Tipo II do Fator de Necrose Tumoral/genética , Transdução de Sinais/genética , Linfócitos T Reguladores/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA