Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3641, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35752624

RESUMO

Lithographically defined arrays of nanomagnets are well placed for application in areas such as probabilistic computing or reconfigurable magnonics due to their emergent collective dynamics and writable magnetic order. Among them are artificial spin ice (ASI), which are arrays of binary in-plane macrospins exhibiting geometric frustration at the vertex interfaces. Macrospin flips in the arrays create topologically protected magnetic charges, or emergent monopoles, which are bound to an antimonopole to conserve charge. In the absence of controllable pinning, it is difficult to manipulate individual monopoles in the array without also influencing other monopole excitations or the counter-monopole charge. Here, we tailor the local magnetic order of a classic ASI lattice by introducing a ferromagnetic defect with shape anisotropy into the array. This creates monopole injection sites at nucleation fields below the critical lattice switching field. Once formed, the high energy monopoles are fixed to the defect site and may controllably propagate through the lattice under stimulation. Defect programing of bound monopoles within the array allows fine control of the pathways of inverted macrospins. Such control is a necessary prerequisite for the realization of functional devices, e. g. reconfigurable waveguide in nanomagnonic applications.

2.
Opt Express ; 28(12): 17219-17231, 2020 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-32679934

RESUMO

We report on the design, fabrication and characterisation of large-area photoconductive THz array structures, consisting of a thin LT-GaAs active region transferred to an insulating substrate using a wafer-scale bonding process. The electrically insulating, transparent substrate reduces the parasitic currents in the devices, allowing peak THz-fields as high as 120 kV cm-1 to be generated over a bandwidth >5 THz. These results are achieved using lower pulse energies than demanded by conventional photoconductive arrays and other popular methods of generating high-field THz radiation. Two device sizes are fully characterised and the emission properties are compared to generation by optical rectification in ZnTe. The device can be operated in an optically saturated regime in order to suppress laser noise.

3.
Sci Rep ; 10(1): 3328, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32076092

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

4.
Nat Commun ; 11(1): 428, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969569

RESUMO

Magnetic skyrmions are topologically non-trivial nanoscale objects. Their topology, which originates in their chiral domain wall winding, governs their unique response to a motion-inducing force. When subjected to an electrical current, the chiral winding of the spin texture leads to a deflection of the skyrmion trajectory, characterised by an angle with respect to the applied force direction. This skyrmion Hall angle is predicted to be skyrmion diameter-dependent. In contrast, our experimental study finds that the skyrmion Hall angle is diameter-independent for skyrmions with diameters ranging from 35 to 825 nm. At an average velocity of 6 ± 1 ms-1, the average skyrmion Hall angle was measured to be 9° ± 2°. In fact, the skyrmion dynamics is dominated by the local energy landscape such as materials defects and the local magnetic configuration.

5.
Sci Rep ; 9(1): 19967, 2019 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882867

RESUMO

Artificial Spin Ice (ASI), consisting of a two dimensional array of nanoscale magnetic elements, provides a fascinating opportunity to observe the physics of out-of-equilibrium systems. Initial studies concentrated on the static, frozen state, whilst more recent studies have accessed the out-of-equilibrium dynamic, fluctuating state. This opens up exciting possibilities such as the observation of systems exploring their energy landscape through monopole quasiparticle creation, potentially leading to ASI magnetricity, and to directly observe unconventional phase transitions. In this work we have measured and analysed the magnetic relaxation of thermally active ASI systems by means of SQUID magnetometry. We have investigated the effect of the interaction strength on the magnetization dynamics at different temperatures in the range where the nanomagnets are thermally active. We have observed that they follow an Arrhenius-type Néel-Brown behaviour. An unexpected negative correlation of the average blocking temperature with the interaction strength is also observed, which is supported by Monte Carlo simulations. The magnetization relaxation measurements show faster relaxation for more strongly coupled nanoelements with similar dimensions. The analysis of the stretching exponents obtained from the measurements suggest 1-D chain-like magnetization dynamics. This indicates that the nature of the interactions between nanoelements lowers the dimensionality of the ASI from 2-D to 1-D. Finally, we present a way to quantify the effective interaction energy of a square ASI system, and compare it to the interaction energy computed with micromagnetic simulations.

6.
Sci Rep ; 9(1): 15989, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690773

RESUMO

Designing and constructing model systems that embody the statistical mechanics of frustration is now possible using nanotechnology. We have arranged nanomagnets on a two-dimensional square lattice to form an artificial spin ice, and studied its fractional excitations, emergent magnetic monopoles, and how they respond to a driving field using X-ray magnetic microscopy. We observe a regime in which the monopole drift velocity is linear in field above a critical field for the onset of motion. The temperature dependence of the critical field can be described by introducing an interaction term into the Bean-Livingston model of field-assisted barrier hopping. By analogy with electrical charge drift motion, we define and measure a monopole mobility that is larger both for higher temperatures and stronger interactions between nanomagnets. The mobility in this linear regime is described by a creep model of zero-dimensional charges moving within a network of quasi-one-dimensional objects.

7.
ACS Nano ; 13(2): 2213-2222, 2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30588800

RESUMO

For over ten years, arrays of interacting single-domain nanomagnets, referred to as artificial spin ices, have been engineered with the aim to study frustration in model spin systems. Here, we use Fresnel imaging to study the reversal process in "pinwheel" artificial spin ice, a modified square ASI structure obtained by rotating each island by some angle about its midpoint. Our results demonstrate that a simple 45° rotation changes the magnetic ordering from antiferromagnetic to ferromagnetic, creating a superferromagnet which exhibits mesoscopic domain growth mediated by domain wall nucleation and coherent domain propagation. We observe several domain-wall configurations, most of which are direct analogues to those seen in continuous ferromagnetic films. However, charged walls also appear due to the geometric constraints of the system. Changing the orientation of the external magnetic field allows control of the nature of the spin reversal with the emergence of either one- or two-dimensional avalanches. This property of pinwheel ASI could be employed to tune devices based on magnetotransport phenomena such as Hall circuits.

8.
Nat Nanotechnol ; 13(12): 1161-1166, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30275493

RESUMO

Magnetic skyrmions are knot-like quasiparticles. They are candidates for non-volatile data storage in which information is moved between fixed read and write terminals. The read-out operation of skyrmion-based spintronic devices will rely on the electrical detection of a single magnetic skyrmion within a nanostructure. Here we present Pt/Co/Ir nanodiscs that support skyrmions at room temperature. We measured the Hall resistivity and simultaneously imaged the spin texture using magnetic scanning transmission X-ray microscopy. The Hall resistivity is correlated to both the presence and size of the skyrmion. The size-dependent part matches the expected anomalous Hall signal when averaging the magnetization over the entire disc. We observed a resistivity contribution that only depends on the number and sign of skyrmion-like objects present in the disc. Each skyrmion gives rise to 22 ± 2 nΩ cm irrespective of its size. This contribution needs to be considered in all-electrical detection schemes applied to skyrmion-based devices. Not only the area of Néel skyrmions but also their number and sign contribute to their Hall resistivity.

9.
Sci Rep ; 8(1): 4750, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556046

RESUMO

Artificial spin ices (ASI) are arrays of single domain nano-magnetic islands, arranged in geometries that give rise to frustrated magnetostatic interactions. It is possible to reach their ground state via thermal annealing. We have made square ASI using different FePd alloys to vary the magnetization via co-sputtering. From a polarized state the samples were incrementally heated and we measured the vertex population as a function of temperature using magnetic force microscopy. For the higher magnetization FePd sample, we report an onset of dynamics at T = 493 K, with a rapid collapse into >90% ground state vertices. In contrast, the low magnetization sample started to fluctuate at lower temperatures, T = 393 K and over a wider temperature range but only reached a maximum of 25% of ground state vertices. These results indicate that the interaction strength, dynamic temperature range and pathways can be finely tuned using a simple co-sputtering process. In addition we have compared our experimental values of the blocking temperature to those predicted using the simple Néel-Brown two-state model and find a large discrepancy which we attribute to activation volumes much smaller than the island volume.

10.
Opt Express ; 25(9): 10177-10188, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468392

RESUMO

We report the generation mechanism associated with nano-grating electrode photomixers fabricated on Fe-doped InGaAsP substrates. Two different emitter designs incorporating nano-gratings coupled to the same broadband antenna were characterized in a continuous-wave terahertz (THz) frequency system employing telecommunications wavelength lasers for generation and coherent detection. The current-voltage characteristics and THz emission bandwidth of the emitters is compared for different bias polarities and optical polarisations. The THz output from the emitters is also mapped as a function of the position of the laser excitation spot for both continuous-wave and pulsed excitation. This mapping, together with full-wave simulations of the structures, confirms the generation mechanism to be due to an enhanced optical electric field at the grating tips resulting in increased optical absorption, coinciding with a concentration of the electrostatic field.

11.
Sensors (Basel) ; 16(12)2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27983655

RESUMO

Nanogap sensors have a wide range of applications as they can provide accurate direct detection of biomolecules through impedimetric or amperometric signals. Signal response from nanogap sensors is dependent on both the electrode spacing and surface area. However, creating large surface area nanogap sensors presents several challenges during fabrication. We show two different approaches to achieve both horizontal and vertical coplanar nanogap geometries. In the first method we use electron-beam lithography (EBL) to pattern an 11 mm long serpentine nanogap (215 nm) between two electrodes. For the second method we use inductively-coupled plasma (ICP) reactive ion etching (RIE) to create a channel in a silicon substrate, optically pattern a buried 1.0 mm × 1.5 mm electrode before anodically bonding a second identical electrode, patterned on glass, directly above. The devices have a wide range of applicability in different sensing techniques with the large area nanogaps presenting advantages over other devices of the same family. As a case study we explore the detection of peptide nucleic acid (PNA)-DNA binding events using dielectric spectroscopy with the horizontal coplanar device.

12.
Sci Rep ; 5: 15420, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26487263

RESUMO

Terahertz frequency time-domain spectroscopy employing free-space radiation has frequently been used to probe the elementary excitations of low-dimensional systems. The diffraction limit, however, prevents its use for the in-plane study of individual laterally-defined nanostructures. Here, we demonstrate a planar terahertz frequency plasmonic circuit in which photoconductive material is monolithically integrated with a two-dimensional electron system. Plasmons with a broad spectral range (up to ~ 400 GHz) are excited by injecting picosecond-duration pulses, generated and detected by a photoconductive semiconductor, into a high mobility two-dimensional electron system. Using voltage modulation of a Schottky gate overlying the two-dimensional electron system, we form a tuneable plasmonic cavity, and observe electrostatic manipulation of the plasmon resonances. Our technique offers a direct route to access the picosecond dynamics of confined electron transport in a broad range of lateral nanostructures.

13.
Phys Chem Chem Phys ; 16(3): 1174-81, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24292551

RESUMO

We present an experimental proof of concept of scanning thermal nanoprobes that utilize the extreme thermal conductance of carbon nanotubes (CNTs) to channel heat between the probe and the sample. The integration of CNTs into scanning thermal microscopy (SThM) overcomes the main drawbacks of standard SThM probes, where the low thermal conductance of the apex SThM probe is the main limiting factor. The integration of CNTs (CNT-SThM) extends SThM sensitivity to thermal transport measurement in higher thermal conductivity materials such as metals, semiconductors and ceramics, while also improving the spatial resolution. Investigation of thermal transport in ultra large scale integration (ULSI) interconnects, using the CNT-SThM probe, showed fine details of heat transport in ceramic layers, vital for mitigating electromigration in ULSI metallic current leads. For a few layer graphene, the heat transport sensitivity and spatial resolution of the CNT-SThM probe demonstrated significantly superior thermal resolution compared to that of standard SThM probes achieving 20-30 nm topography and ~30 nm thermal spatial resolution compared to 50-100 nm for standard SThM probes. The outstanding axial thermal conductivity, a high aspect ratio and robustness of CNTs can make CNT-SThM the perfect thermal probe for the measurement of nanoscale thermophysical properties and an excellent candidate for the next generation of thermal microscopes.

14.
Langmuir ; 28(43): 15385-91, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23036116

RESUMO

Langmuir-Blodgett deposition has been used to form thin film networks of both metallic and semiconducting single-walled carbon nanotubes. These have been investigated to understand their physical, optical, and morphological properties. The electrical conductivities over the temperature range 80-350 K and across electrode gaps of 220 nm and 2 mm have been explored. In the case of semiconducting tubes, the results suggest that Poole-Frenkel conduction is the dominant electrical process at temperatures below 150 K and electric fields of greater than 1 MV m(-1). Metallic nanotube networks exhibit a decrease in resistance with a reduction in temperature. This can be approximated by a linear relationship, giving a temperature coefficient of resistance of 10(-3) K(-1).

15.
Nano Lett ; 12(6): 2906-11, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22524441

RESUMO

We report direct imaging of nanoscale thermal transport in single and few-layer graphene with approximately 50 nm lateral resolution using high vacuum scanning thermal microscopy. We observed increased heat transport in suspended graphene where heat is conducted by ballistic phonons, compared to adjacent areas of supported graphene, and observed decreasing thermal conductance of supported graphene with increased layer number. Our nanothermal images suggest a mean-free-path of thermal phonons in supported graphene below 100 nm.


Assuntos
Grafite/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Transferência de Energia , Temperatura Alta , Teste de Materiais , Tamanho da Partícula , Condutividade Térmica
17.
Analyst ; 133(8): 1060-3, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18645647

RESUMO

A single microelectrode array platform, divided into groups of microelectrodes with flexible multiplexing can enable a 'defective' cluster of microelectrodes to be readily identified, by comparing normalised currents with the numbers of microelectrodes in the groups of arrays. This generic design principle may be extended for integrating multiple analyte sensing in a single microarray platform. The calibration of the microelectrode arrays, using white light interferometry and electrochemistry is described. The application for multianalyte detection is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...