Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1365074, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510259

RESUMO

Staphylococcus aureus is a gram-positive bacterium that may cause intestinal inflammation by secreting enterotoxins, which commonly cause food-poisoning and gastrointestinal injuries. Staphylococcal enterotoxin B (SEB) acts as a superantigen (SAg) by binding in a bivalent manner the T-cell receptor (TCR) and the costimulatory receptor CD28, thus stimulating T cells to produce large amounts of inflammatory cytokines, which may affect intestinal epithelial barrier integrity and functions. However, the role of T cell-mediated SEB inflammatory activity remains unknown. Here we show that inflammatory cytokines produced by T cells following SEB stimulation induce dysfunctions in Caco-2 intestinal epithelial cells by promoting actin cytoskeleton remodelling and epithelial cell-cell junction down-regulation. We also found that SEB-activated inflammatory T cells promote the up-regulation of epithelial-mesenchymal transition transcription factors (EMT-TFs) in a nuclear factor-κB (NF-κB)- and STAT3-dependent manner. Finally, by using a structure-based design approach, we identified a SEB mimetic peptide (pSEB116-132) that, by blocking the binding of SEB to CD28, dampens inflammatory-mediated dysregulation of intestinal epithelial barrier.


Assuntos
Antígenos CD28 , Superantígenos , Humanos , Células CACO-2 , Enterotoxinas , Citocinas
2.
J Exp Clin Cancer Res ; 43(1): 27, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38254102

RESUMO

BACKGROUND: Peritoneal metastasis, which accounts for 85% of all epithelial ovarian carcinoma (EOC) metastases, is a multistep process that requires the establishment of adhesive interactions between cancer cells and the peritoneal membrane. Interrelations between EOC and the mesothelial stroma are critical to facilitate the metastatic process. No data is available so far on the impact of histone acetylation/deacetylation, a potentially relevant mechanism governing EOC metastasis, on mesothelial cells (MCs)-mediated adhesion. METHODS: Static adhesion and peritoneal clearance experiments were performed pretreating mesenchymal-like MCs and platinum-sensitive/resistant EOC cell lines with MS-275-a Histone deacetylase (HDAC)1-3 pharmacological inhibitor currently used in combination trials. Results were acquired by confocal microscopy and were analyzed with an automated Opera software. The role of HDAC1/2 was validated by genetic silencing. The role of α4-, α5-α1 Integrins and Fibronectin-1 was validated using specific monoclonal antibodies. Quantitative proteomic analysis was performed on primary MCs pretreated with MS-275. Decellularized matrices were generated from either MS-275-exposed or untreated cells to study Fibronectin-1 extracellular secretion. The effect of MS-275 on ß1 integrin activity was assessed using specific monoclonal antibodies. The role of Talin-1 in MCs/EOC adhesion was analyzed by genetic silencing. Talin-1 ectopic expression was validated as a rescue tool from MS-275-induced phenotype. The in vivo effect of MS-275-induced MC remodeling was validated in a mouse model of peritoneal EOC dissemination. RESULTS: Treatment of MCs with non-cytotoxic concentrations of MS-275 caused a consistent reduction of EOC adhesion. Proteomic analysis revealed several pathways altered upon MC treatment with MS-275, including ECM deposition/remodeling, adhesion receptors and actin cytoskeleton regulators. HDAC1/2 inhibition hampered actin cytoskeleton polymerization by downregulating actin regulators including Talin-1, impairing ß1 integrin activation, and leading to abnormal extracellular secretion and distribution of Fibronectin-1. Talin-1 ectopic expression rescued EOC adhesion to MS-275-treated MCs. In an experimental mouse model of metastatic EOC, MS-275 limited tumor invasion, Fibronectin-1 secretion and the sub-mesothelial accumulation of MC-derived carcinoma-associated fibroblasts. CONCLUSION: Our study unveils a direct impact of HDAC-1/2 in the regulation of MC/EOC adhesion and highlights the regulation of MC plasticity by epigenetic inhibition as a potential target for therapeutic intervention in EOC peritoneal metastasis.


Assuntos
Benzamidas , Carcinoma Epitelial do Ovário , Adesão Celular , Histona Desacetilase 1 , Histona Desacetilase 2 , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Citoesqueleto de Actina/metabolismo , Anticorpos Monoclonais , Carcinoma Epitelial do Ovário/metabolismo , Epitélio , Proteínas da Matriz Extracelular/metabolismo , Fibronectinas , Histona Desacetilase 1/metabolismo , Integrina alfa5 , Integrina beta1/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Proteômica , Piridinas , Talina/genética , Talina/metabolismo , Histona Desacetilase 2/metabolismo , Adesão Celular/genética
3.
Matrix Biol ; 125: 31-39, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081526

RESUMO

Discoidin domain receptors (DDRs), including DDR1 and DDR2, are a unique class of receptor tyrosine kinases (RTKs) activated by collagens at the cell-matrix boundary interface. The peculiar mode of activation makes DDRs as key cellular sensors of microenvironmental changes, with a critical role in all physiological and pathological processes governed by collagen remodeling. DDRs are widely expressed in fetal and adult tissues, and experimental and clinical evidence has shown that their expression is deregulated in cancer. Strong findings supporting the role of collagens in tumor progression and metastasis have led to renewed interest in DDRs.  However, despite an increasing number of studies, DDR biology remains poorly understood, particularly the less studied DDR2, whose involvement in cancer progression mechanisms is undoubted. Thus, the understanding of a wider range of DDR2 functions and related molecular mechanisms is expected. To date, several lines of evidence support DDR2 as a promising target in cancer therapy. Its involvement in key functions in the tumor microenvironment makes DDR2 inhibition particularly attractive to achieve simultaneous targeting of tumor and stromal cells, and tumor regression, which is beneficial for improving the response to different types of anti-cancer therapies, including chemo- and immunotherapy. This review summarizes current research on DDR2, focusing on its role in cancer progression through its involvement in tumor and stromal cell functions, and discusses findings that support the rationale for future development of direct clinical strategies targeting DDR2.


Assuntos
Receptor com Domínio Discoidina 2 , Neoplasias , Adulto , Humanos , Receptor com Domínio Discoidina 2/genética , Receptor com Domínio Discoidina 2/metabolismo , Receptores Mitogênicos/genética , Receptores Mitogênicos/metabolismo , Ligação Proteica , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores com Domínio Discoidina/genética , Neoplasias/genética , Colágeno/metabolismo , Receptor com Domínio Discoidina 1/genética , Receptor com Domínio Discoidina 1/metabolismo , Microambiente Tumoral
5.
J Exp Clin Cancer Res ; 42(1): 66, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932446

RESUMO

BACKGROUND: Altered microRNA profiles have been observed not only in tumour tissues but also in biofluids, where they circulate in a stable form thus representing interesting biomarker candidates. This study aimed to identify a microRNA signature as a non-invasive biomarker and to investigate its impact on glioma biology. METHODS: MicroRNAs were selected using a global expression profile in preoperative serum samples from 37 glioma patients. Comparison between serum samples from age and gender-matched controls was performed by using the droplet digital PCR. The ROC curve and Kaplan-Meier survival analyses were used to evaluate the diagnostic/prognostic values. The functional role of the identified signature was assessed by gain/loss of function strategies in glioma cells. RESULTS: A three-microRNA signature (miR-1-3p/-26a-1-3p/-487b-3p) was differentially expressed in the serum of patients according to the isocitrate dehydrogenase (IDH) genes mutation status and correlated with both patient Overall and Progression Free Survival. The identified signature was also downregulated in the serum of patients compared to controls. Consistent with these results, the signature expression and release in the conditioned medium of glioma cells was lower in IDH-wild type cells compared to the mutated counterpart. Furthermore, in silico analysis of glioma datasets showed a consistent deregulation of the signature according to the IDH mutation status in glioma tumour tissues. Ectopic expression of the signature negatively affects several glioma functions. Notably, it impacts the glioma invasive phenotype by directly targeting the invadopodia-related proteins TKS4, TKS5 and EFHD2. CONCLUSIONS: We identified a three microRNA signature as a promising complementary or even an independent non-invasive diagnostic/prognostic biomarker. The signature displays oncosuppressive functions in glioma cells and impacts on proteins crucial for migration and invasion, providing potential targets for therapeutic intervention.


Assuntos
Neoplasias Encefálicas , MicroRNA Circulante , Glioma , MicroRNAs , Humanos , Neoplasias Encefálicas/patologia , Biomarcadores Tumorais/genética , Glioma/patologia , MicroRNAs/genética , Prognóstico , Isocitrato Desidrogenase/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação ao Cálcio
6.
Cell Death Dis ; 14(1): 73, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717550

RESUMO

Dissemination of high-grade serous ovarian cancer (HG-SOC) in the omentum and intercalation into a mesothelial cell (MC) monolayer depends on functional α5ß1 integrin (Intα5ß1) activity. Although the binding of Intα5ß1 to fibronectin drives these processes, other molecular mechanisms linked to integrin inside-out signaling might support metastatic dissemination. Here, we report a novel interactive signaling that contributes to Intα5ß1 activation and accelerates tumor cells toward invasive disease, involving the protein ß-arrestin1 (ß-arr1) and the activation of the endothelin A receptor (ETAR) by endothelin-1 (ET-1). As demonstrated in primary HG-SOC cells and SOC cell lines, ET-1 increased Intß1 and downstream FAK/paxillin activation. Mechanistically, ß-arr1 directly interacts with talin1 and Intß1, promoting talin1 phosphorylation and its recruitment to Intß1, thus fueling integrin inside-out activation. In 3D spheroids and organotypic models mimicking the omentum, ETAR/ß-arr1-driven Intα5ß1 signaling promotes the survival of cell clusters, with mesothelium-intercalation capacity and invasive behavior. The treatment with the antagonist of ETAR, Ambrisentan (AMB), and of Intα5ß1, ATN161, inhibits ET-1-driven Intα5ß1 activity in vitro, and tumor cell adhesion and spreading to intraperitoneal organs and Intß1 activity in vivo. As a prognostic factor, high EDNRA/ITGB1 expression correlates with poor HG-SOC clinical outcomes. These findings highlight a new role of ETAR/ß-arr1 operating an inside-out integrin activation to modulate the metastatic process and suggest that in the new integrin-targeting programs might be considered that ETAR/ß-arr1 regulates Intα5ß1 functional pathway.


Assuntos
Integrina alfa5beta1 , Neoplasias Ovarianas , Receptor de Endotelina A , Talina , beta-Arrestina 1 , Feminino , Humanos , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Endotelina-1/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor de Endotelina A/genética , Receptor de Endotelina A/metabolismo , Integrina alfa5beta1/metabolismo , Talina/genética , Talina/metabolismo
7.
Explor Target Antitumor Ther ; 3(1): 11-26, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046354

RESUMO

Aim: B-cell lymphoma-2 (Bcl-2)-like protein-10 (Bcl2L10) is the less studied member of Bcl-2 family proteins, with the controversial role in different cancer histotypes. Very recently, Bcl2L10 expression in melanoma tumor specimens and its role in melanoma response to therapy have been demonstrated. Here, the involvement of Bcl2L10 on the in vitro and in vivo properties associated with melanoma aggressive features has been investigated. Methods: Endogenous Bcl2L10 protein expression was detected by western blotting analysis in a panel of patient-derived and commercially available human melanoma cells. In vitro assays to evaluate clonogenicity, cell proliferation, cell migration, cell invasion, and in vitro capillary-like structure formation [vasculogenic mimicry (VM)] have been performed by using human melanoma cells stably overexpressing Bcl2L10 or transiently transfected for loss/gain function of Bcl2L10, grown under two- or three-dimensional (3D) conditions Xenograft melanoma model was employed to evaluate in vivo tumor growth and angiogenesis. Results: Results demonstrated that Bcl2L10 acts as an inducer of in vitro cell migration, invasion, and VM, while in vitro cell proliferation, in vivo tumor growth, as well as colony formation properties were not affected. Dissecting different signaling pathways, it was found that Bcl2L10 positively affects the phosphorylation of extracellular-signal-regulated kinase (ERK) and the expression of markers of cell invasion, such as urokinase plasminogen activator receptor (uPAR) and matrix metalloproteinases (MMPs). Of note, Bcl2L10-dependent in vitro migration, invasion, and VM are linked to uPAR. Bcl2L10 also negatively regulates the intracellular calcium level. Finally, reduced invasion capability in 3D spheroid invasion assay of melanoma cells transiently overexpressing Bcl2L10 was observed after treatment with inhibitors of MMPs and uPAR. Conclusions: Overall, data reported in this paper provide evidence supporting a positive role of Bcl2L10 in melanoma aggressive features.

8.
Nanoscale ; 14(31): 11415-11428, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35903969

RESUMO

Conventional batch syntheses of polymer-based nanoparticles show considerable shortcomings in terms of scarce control over nanomaterials morphology and limited lot-to-lot reproducibility. Droplet-based microfluidics represents a valuable strategy to overcome these constraints, exploiting the formation of nanoparticles within discrete microdroplets. In this work, we synthesized nanogels (NGs) composed of hyaluronic acid and polyethyleneimine using a microfluidic flow-focusing device endowed with a pressure-driven micro-actuator. The actuator achieves real-time modulation of the junction orifice width, thereby regulating the microdroplet diameter and, as a result, the NG size. Acting on process parameters, NG hydrodynamic diameter could be tuned in the range 92-190 nm while preserving an extremely low polydispersity (0.015); those values are hardly achievable in batch syntheses and underline the strength of our toolbox for the continuous in-flow synthesis of nanocarriers. Furthermore, NGs were validated in vitro as a drug delivery system in a representative case study still lacking an effective therapeutic treatment: ovarian cancer. Using doxorubicin as a chemotherapeutic agent, we show that NG-mediated release of the drug results in an enhanced antiblastic effect vs. the non-encapsulated administration route even at sublethal dosages, highlighting the wide applicability of our microfluidics-enabled nanomaterials in healthcare scenarios.


Assuntos
Nanopartículas , Nanoestruturas , Sistemas de Liberação de Medicamentos , Microfluídica/métodos , Nanogéis , Reprodutibilidade dos Testes
9.
J Exp Clin Cancer Res ; 41(1): 148, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440004

RESUMO

BACKGROUND: Despite the promise of dual BRAF/MEK inhibition as a therapy for BRAF-mutant (BRAF-mut) melanoma, heterogeneous responses have been observed in patients, thus predictors of benefit from therapy are needed. We have previously identified semaphorin 6A (SEMA6A) as a BRAF-mut-associated protein involved in actin cytoskeleton remodeling. The purpose of the present study is to dissect the role of SEMA6A in the biology of BRAF-mut melanoma, and to explore its predictive potential towards dual BRAF/MEK inhibition. METHODS: SEMA6A expression was assessed by immunohistochemistry in melanoma cohort RECI1 (N = 112) and its prognostic potential was investigated in BRAF-mut melanoma patients from DFCI and TCGA datasets (N = 258). The molecular mechanisms regulated by SEMA6A to sustain tumor aggressiveness and targeted therapy resistance were investigated in vitro by using BRAF-mut and BRAF-wt melanoma cell lines, an inducible SEMA6A silencing cell model and a microenvironment-mimicking fibroblasts-coculturing model. Finally, SEMA6A prediction of benefit from dual BRAF/MEK inhibition was investigated in melanoma cohort RECI2 (N = 14). RESULTS: Our results indicate higher protein expression of SEMA6A in BRAF-mut compared with BRAF-wt melanoma patients and show that SEMA6A is a prognostic indicator in BRAF-mut melanoma from TCGA and DFCI patients cohorts. In BRAF-mut melanoma cells, SEMA6A coordinates actin cytoskeleton remodeling by the RhoA-dependent activation of YAP and dual BRAF/MEK inhibition by dabrafenib+trametinib induces SEMA6A/RhoA/YAP axis. In microenvironment-mimicking co-culture condition, fibroblasts confer to melanoma cells a proliferative stimulus and protect them from targeted therapies, whereas SEMA6A depletion rescues the efficacy of dual BRAF/MEK inhibition. Finally, in BRAF-mut melanoma patients treated with dabrafenib+trametinib, high SEMA6A predicts shorter recurrence-free interval. CONCLUSIONS: Overall, our results indicate that SEMA6A contributes to microenvironment-coordinated evasion of melanoma cells from dual BRAF/MEK inhibition and it might be a good candidate predictor of short-term benefit from dual BRAF/MEK inhibition.


Assuntos
Melanoma , Semaforinas , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Microambiente Tumoral , Proteína rhoA de Ligação ao GTP/metabolismo
10.
Front Cell Dev Biol ; 9: 764375, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926453

RESUMO

Transcoelomic spread of serous ovarian cancer (SOC) results from the cooperative interactions between cancer and host components. Tumor-derived factors might allow the conversion of mesothelial cells (MCs) into tumor-associated MCs, providing a favorable environment for SOC cell dissemination. However, factors and molecular mechanisms involved in this process are largely unexplored. Here we investigated the tumor-related endothelin-1 (ET-1) as an inducer of changes in MCs supporting SOC progression. Here, we report a significant production of ET-1 from MCs associated with the expression of its cognate receptors, ETA and ETB, along with the protein ß-arrestin1. ET-1 triggers MC proliferation via ß-arrestin1-dependent MAPK and NF-kB pathways and increases the release of cancer-related factors. The ETA/ETB receptor activation supports the genetic reprogramming of mesothelial-to-mesenchymal transition (MMT), with upregulation of mesenchymal markers, as fibronectin, α-SMA, N-cadherin and vimentin, NF-kB-dependent Snail transcriptional activity and downregulation of E-cadherin and ZO-1, allowing to enhanced MC migration and invasion, and SOC transmesothelial migration. These effects are impaired by either blockade of ETAR and ETBR or by ß-arrestin1 silencing. Notably, in peritoneal metastases both ETAR and ETBR are co-expressed with MMT markers compared to normal control peritoneum. Collectively, our report shows that the ET-1 axis may contribute to the early stage of SOC progression by modulating MC pro-metastatic behaviour via MMT.

11.
Cell Rep ; 34(9): 108800, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33657382

RESUMO

Cancer cells use actin-based membrane protrusions, invadopodia, to degrade stroma and invade. In serous ovarian cancer (SOC), the endothelin A receptor (ETAR) drives invadopodia by a not fully explored coordinated function of ß-arrestin1 (ß-arr1). Here, we report that ß-arr1 links the integrin-linked kinase (ILK)/ßPIX complex to activate Rac3 GTPase, acting as a central node in the adhesion-based extracellular matrix (ECM) sensing and degradation. Downstream, Rac3 phosphorylates PAK1 and cofilin and promotes invadopodium-dependent ECM proteolysis and invasion. Furthermore, ETAR/ILK/Rac3 signaling supports the communication between cancer and mesothelial cells, favoring SOC cell adhesion and transmigration. In vivo, ambrisentan, an ETAR antagonist, inhibits the adhesion and spreading of tumor cells to intraperitoneal organs, and invadopodium marker expression. As prognostic factors, high EDNRA/ILK expression correlates with poor SOC clinical outcome. These findings provide a framework for the ET-1R/ß-arr1 pathway as an integrator of ILK/Rac3-dependent adhesive and proteolytic signaling to invadopodia, favoring cancer/stroma interactions and metastatic behavior.


Assuntos
Movimento Celular/efeitos dos fármacos , Endotelina-1/farmacologia , Células Epiteliais/enzimologia , Neoplasias Ovarianas/enzimologia , Peritônio/enzimologia , Podossomos/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Receptor de Endotelina A/metabolismo , Fatores de Despolimerização de Actina/genética , Fatores de Despolimerização de Actina/metabolismo , Animais , Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Cocultura , Bases de Dados Genéticas , Antagonistas do Receptor de Endotelina A/farmacologia , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Peritônio/patologia , Fenilpropionatos/farmacologia , Fosforilação , Podossomos/enzimologia , Podossomos/genética , Podossomos/patologia , Proteínas Serina-Treonina Quinases/genética , Piridazinas/farmacologia , Receptor de Endotelina A/efeitos dos fármacos , Receptor de Endotelina A/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Arrestina 1/genética , beta-Arrestina 1/metabolismo , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/metabolismo , Proteínas rac de Ligação ao GTP/genética , Proteínas rac de Ligação ao GTP/metabolismo
12.
Front Cell Dev Biol ; 8: 584181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178698

RESUMO

During the metastatic progression, invading cells might achieve degradation and subsequent invasion into the extracellular matrix (ECM) and the underlying vasculature using invadopodia, F-actin-based and force-supporting protrusive membrane structures, operating focalized proteolysis. Their formation is a dynamic process requiring the combined and synergistic activity of ECM-modifying proteins with cellular receptors, and the interplay with factors from the tumor microenvironment (TME). Significant advances have been made in understanding how invadopodia are assembled and how they progress in degradative protrusions, as well as their disassembly, and the cooperation between cellular signals and ECM conditions governing invadopodia formation and activity, holding promise to translation into the identification of molecular targets for therapeutic interventions. These findings have revealed the existence of biochemical and mechanical interactions not only between the actin cores of invadopodia and specific intracellular structures, including the cell nucleus, the microtubular network, and vesicular trafficking players, but also with elements of the TME, such as stromal cells, ECM components, mechanical forces, and metabolic conditions. These interactions reflect the complexity and intricate regulation of invadopodia and suggest that many aspects of their formation and function remain to be determined. In this review, we will provide a brief description of invadopodia and tackle the most recent findings on their regulation by cellular signaling as well as by inputs from the TME. The identification and interplay between these inputs will offer a deeper mechanistic understanding of cell invasion during the metastatic process and will help the development of more effective therapeutic strategies.

13.
Commun Biol ; 3(1): 677, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188287

RESUMO

Identification of regulatory mechanisms underlying the poor prognosis of ovarian cancer is necessary for diagnostic and therapeutic implications. Here we show that endothelin A receptor (ETAR) and ZEB1 expression is upregulated in mesenchymal ovarian cancer and correlates with poor prognosis. Notably, the expression of ETAR and ZEB1 negatively correlates with miR-200b/c. These miRNAs, besides targeting ZEB1, impair ETAR expression through the 3'UTR binding. ZEB1, in turn, restores ETAR levels by transcriptionally repressing miR-200b/c. Activation of ETAR drives the expression of ZEB1 integrating the miR-200/ZEB1 double negative feedback loop. The ETAR-miR-200b/c-ZEB1 circuit promotes epithelial-mesenchymal transition, cell plasticity, invasiveness and metastasis. Of therapeutic interest, ETAR blockade with macitentan, a dual ETAR and ETBR antagonist, increases miR-200b/c and reduces ZEB1 expression with the concomitant inhibition of metastatic dissemination. Collectively, these findings highlight the reciprocal network that integrates ETAR and ZEB1 axes with the miR-200b/c regulatory circuit to favour metastatic progression in ovarian cancer.


Assuntos
MicroRNAs/metabolismo , Metástase Neoplásica/fisiopatologia , Neoplasias Ovarianas/patologia , Pirimidinas/farmacologia , Receptor de Endotelina A/metabolismo , Sulfonamidas/farmacologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Antagonistas do Receptor de Endotelina A/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Nus , MicroRNAs/genética , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Ovarianas/prevenção & controle , Receptor de Endotelina A/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
14.
Cancer Lett ; 492: 84-95, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32860850

RESUMO

The majority of ovarian cancer (OC) patients recur with a platinum-resistant disease. OC cells activate adaptive resistance mechanisms that are only partially described. Here we show that OC cells can adapt to chemotherapy through a positive-feedback loop that favors chemoresistance. In platinum-resistant OC cells we document that the endothelin-1 (ET-1)/endothelin A receptor axis intercepts the YAP pathway. This cross-talk occurs through the LATS/RhoA/actin-dependent pathway and contributes to prevent the chemotherapy-induced apoptosis. Mechanistically, ß-arrestin1 (ß-arr1) and YAP form a complex shaping TEAD-dependent transcriptional activity on the promoters of YAP target genes, including EDN1, which fuels a feed-forward signaling circuit that sustains a platinum-tolerant state. The FDA approved dual ET-1 receptor antagonist macitentan in co-therapy with cisplatin sensitizes resistant cells to the platinum-based therapy, reducing their metastatic potential. Furthermore, high ETAR/YAP gene expression signature is associated with a poor platinum-response in OC patients. Collectively, our findings identify in the networking between ET-1 and YAP pathways an escape strategy from chemotherapy. ET-1 receptor blockade interferes with such adaptive network and enhances platinum-induced apoptosis, representing a promising therapeutic opportunity to restore drug sensitivity in OC patients.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Endotelina-1/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Fatores de Transcrição/fisiologia , Aciltransferases , Animais , Apoptose , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Receptor de Endotelina A/fisiologia , beta-Arrestina 1/fisiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-31551935

RESUMO

Recent studies imply a key role of endothelin-1 receptor (ET-1R), belonging to the largest family of G protein-coupled receptors (GPCR), in the regulation of a plethora of processes involved in tumorigenesis and metastatic progression. ß-arrestin-1 (ß-arr1) system has been recognized as a critical hub controlling GPCR signaling network, directing the GPCR's biological outcomes. In ovarian cancer, ET-1R/ß-arr1 axis enables cancer cells to engage several integrated signaling, and represents an actionable target for developing novel therapeutic approaches. Preclinical research studies demonstrate that ET-1R blockade by the approved dual ETAR/ETBR antagonist macitentan counteracts ß-arr1-mediated signaling network, and hampers the dialogue among cancer cells and the tumor microenvironment, interfering with metastatic progression and drug response. In light of major developments in the ET-1R signaling paradigm, this review article discusses the emerging evidence of the dual ET-1R antagonist treatment in cancer, and outlines our challenge in preclinical studies warranting the repurposing of ET-1R antagonists for the design of more effective clinical trials based on combinatorial therapies to overcome, or prevent, the onset of drug resistance.

16.
Nat Commun ; 10(1): 3196, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324767

RESUMO

The limited clinical response observed in high-grade serous ovarian cancer (HG-SOC) with high frequency of TP53 mutations (mutp53) might be related to mutp53-driven oncogenic pathway network. Here we show that ß-arrestin1 (ß-arr1), interacts with YAP, triggering its cytoplasmic-nuclear shuttling. This interaction allows ß-arr1 to recruit mutp53 to the YAP-TEAD transcriptional complex upon activation of endothelin-1 receptors (ET-1R) in patient-derived HG-SOC cells and in cell lines bearing mutp53. In parallel, ß-arr1 mediates the ET-1R-induced Trio/RhoA-dependent YAP nuclear accumulation. In the nucleus, ET-1 through ß-arr1 orchestrates the tethering of YAP and mutp53 to YAP/mutp53 target gene promoters, including EDN1 that ensures persistent signals. Treatment of patient-derived xenografts reveals synergistic antitumoral and antimetastatic effects of the dual ET-1R antagonist macitentan in combination with cisplatinum, shutting-down the ß-arr1-mediated YAP/mutp53 transcriptional programme. Furthermore, ETAR/ß-arr1/YAP gene signature correlates with a worst prognosis in HG-SOC. These findings support effective combinatorial treatment for repurposing the ET-1R antagonists in HG-SOC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cistadenocarcinoma Seroso/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor de Endotelina A/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta-Arrestina 1/metabolismo , Animais , Antineoplásicos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Modelos Animais de Doenças , Endotelina-1/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Camundongos Nus , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pirimidinas/farmacologia , Receptor de Endotelina A/efeitos dos fármacos , Sulfonamidas/farmacologia , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas de Sinalização YAP , beta-Arrestina 1/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
17.
Int Rev Cell Mol Biol ; 346: 129-155, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31122393

RESUMO

Metastatic progression is strongly influenced by the connection between hyperactivated signaling pathways. G-protein coupled receptors (GPCRs) through ß-arrestins (ß-arrs), which serve as intracellular signaling molecules, integrate different pathways to control multiple aspects of metastatic process. As primary component of a core-scaffold, ß-arr-dependent signaling represents a mean to direct spatiotemporal specificity of multi-protein complexes in invasion and extracellular matrix (ECM) degradation. Under this paradigm, ß-arrs engage a growing number of signaling molecules and organizing protein networks controlling multiple pathways, and cytoskeleton modifications, permitting adaptation to the tumor microenvironment to sustain metastatic dissemination. These findings implicate GPCR/ß-arr function as a regulatory tethering hub to orchestrate diverse cellular mechanisms of cancer cell migration and invasion that are critical for metastatic progression. In this chapter, we outline the most recent findings on GPCR/ß-arr-guided molecular interactions in specific intracellular compartments to drive metastasis, while discussing new perspectives for the selection of most effective therapeutic options for a personalized medicine.


Assuntos
Citoesqueleto de Actina/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Citoesqueleto de Actina/patologia , Animais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais
18.
Methods Mol Biol ; 1957: 393-406, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30919368

RESUMO

Endothelin-1 (ET-1), which acts through the endothelin A receptor (ETAR) or ETBR, belonging to the large family of G-protein coupled receptors (GPCR), is involved in physiopathological processes, such as cancer. In epithelial ovarian cancer, a pervasively activated ET-1/ETAR axis drives different steps of tumor progression and confers drug resistance. In this malignancy, one major aspect associated with the ETAR signaling machinery resides in the fact that this receptor may use ß-arrestin-1 (ß-arr1) function to spatially and temporally activate key oncogenic pathways. This results in specificity of ET-1/ETAR signal transduction mechanisms and downstream signaling pathways. As such, ß-arr1 has been recognized as an important signal transducer involved in multiple cross talks with other signaling pathways, including those activated by tyrosine kinase receptors. The interaction with diverse sets of partners positions ß-arr1 as a critical regulator of GPCR signal transduction and permits the integration of ETAR-mediated signals with other cytoplasmic or nuclear inputs. In particular, the scaffolding function of ß-arr1 provides an essential link in translating ETAR function by altering ß-catenin localization and function, promoting ß-catenin-related transcriptional activity and gene transcription relevant to tumor progression. This chapter outlines the methodologies for the measurement of ß-arr1/ß-catenin protein interactions and functional activity in tumor cells.


Assuntos
Biologia Molecular/métodos , Neoplasias Ovarianas/metabolismo , Transdução de Sinais , beta Catenina/metabolismo , beta-Arrestina 1/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA/metabolismo , Feminino , Genes Reporter , Humanos , Luciferases/metabolismo
19.
Front Pharmacol ; 10: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30837880

RESUMO

Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to ß-arrestin (ß-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins ß-arr1 or ß-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the ß-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, ß-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional ß-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/ß-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of ß-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...