Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Braz J Microbiol ; 53(2): 801-818, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199325

RESUMO

Foot rot disease caused by Phytophthora capsici is a serious threat to black pepper cultivation in India and globally. High diversity exists among the Phytophthora isolates of black pepper and hence detailed investigations of their morphology and phylogenetic taxonomy were carried out in the present study. In order to resolve the diversity, 182 isolates of Phytophthora, collected from different black pepper-growing tracts of South India during 1998-2013 and maintained in the National Repository of Phytophthora at ICAR-Indian Institute of Spices Research, Kozhikode, were subjected to morphological, molecular and phylogenetic characterization. Morphologically all the isolates were long pedicellate with umbellate/simple sympodial sporangiophores and papillate sporangia with l/b ranging from 1.63 to 2.55 µm. Maximum temperature for the growth was ~ 34 °C. Chlamydospores were observed in "tropicalis" group, whereas they were absent in "capsici" group. Initial molecular studies using internal transcribed spacer (ITS) marker gene showed two clear cut lineages-"capsici-like" and "tropicalis-like" groups among them. Representative isolates from each group were subjected to host differential test, multilocus sequence typing (MLST) and phylogeny studies. MLST analysis of seven nuclear genes (60S ribosomal protein L10, beta-tubulin, elongation factor 1 alpha, enolase, heat shock protein 90, 28S ribosomal DNA and TigA gene fusion protein) clearly delineated black pepper Phytophthora isolates into two distinct species-P. capsici and P. tropicalis. On comparing with type strains from ATCC, it was found that the type strains of P. capsici and P. tropicalis differed from black pepper isolates in their infectivity on black pepper. The high degree of genetic polymorphism observed in black pepper Phytophthora isolates is an indication of the selection pressure they are subjected to in the complex habitat which ultimately may lead to speciation. So based on the extensive analysis, it is unambiguously proved that the foot rot disease of black pepper in India is predominantly caused by two species of Phytophthora, viz. P. capsici and P. tropicalis. Presence of multiple species of Phytophthora in the black pepper agro-ecosystem warrants a revisit to the control strategy being adopted for managing this serious disease. The silent molecular evolution taking place in such an ecological niche needs to be critically studied for the sustainable management of foot rot disease.


Assuntos
Phytophthora , Piper nigrum , Ecossistema , Humanos , Tipagem de Sequências Multilocus , Filogenia , Piper nigrum/microbiologia , Doenças das Plantas/microbiologia , Irmãos
2.
Indian J Exp Biol ; 54(6): 400-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27468467

RESUMO

The genus Garcinia shows a considerable variation in its morphological characters such as leaf, flower and fruit with taxonomic ambiguity. It is a potential under-exploited multipurpose crop that gained considerable attention for the presence of (-) hydroxycitric acid, an anti-obesity compound, in its fruit rind and leaves. Here, we evaluated the genetic relationship through molecular markers among the selected 9 species commonly available in the Western Ghats and the Northeastern Himalayan foot hills of India. The nucleotide sequence data obtained from two prominent monomorphic bands generated in ISSR profiling of the species was utilized for the study. The selected bands were found to be of ITS region (700 bp) and partial region of KNOX-1 gene (600 bp). The evolutionary cluster was formed using MEGA5 software. The study indicated 2 major clusters, influenced by floral morphology of the species and availability of (-) hydroxycitric acid in their fruit rinds. In the subclusters, one species from the Western Ghats were paired with another from Northeastern Himalayas with relatively similar morphological traits.


Assuntos
DNA de Plantas/genética , Garcinia/genética , Marcadores Genéticos/genética , Citratos/análise , DNA Intergênico/genética , Frutas/química , Garcinia/classificação , Variação Genética/genética , Proteínas de Homeodomínio/genética , Índia , Proteínas de Plantas/genética
3.
Proteomics ; 16(7): 1111-22, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26857420

RESUMO

Smut caused by Sporisorium scitamineum is one of the important diseases of sugarcane with global significance. Despite the intriguing nature of sugarcane, S. scitamineum interaction, several pertinent aspects remain unexplored. This study investigates the proteome level alterations occurring in the meristem of a S. scitamineum infected susceptible sugarcane cultivar at whip emergence stage. Differentially abundant proteins were identified by 2DE coupled with MALDI-TOF/TOF-MS. Comprehensively, 53 sugarcane proteins identified were related to defence, stress, metabolism, protein folding, energy, and cell division; in addition, a putative effector of S. scitamineum, chorismate mutase, was identified. Transcript expression vis-à-vis the activity of phenylalanine ammonia lyase was relatively higher in the infected meristem. Abundance of seven candidate proteins in 2D gel profiles was in correlation with its corresponding transcript expression levels as validated by qRT-PCR. Furthermore, this study has opened up new perspectives on the interaction between sugarcane and S. scitamineum.


Assuntos
Proteínas de Plantas/análise , Proteoma/análise , Saccharum/metabolismo , Saccharum/microbiologia , Ustilaginales/patogenicidade , Eletroforese em Gel Bidimensional , Interações Hospedeiro-Patógeno , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteoma/química , Proteoma/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA