Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 294: 133667, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35077737

RESUMO

Nowadays, there are countless articles about the harmful effects of paracetamol (PCM) in non-target organisms. Nonetheless, information regarding the toxicity of ciprofloxacin (CPX) and the CPX-PCM mixture is still limited. Herein, we aimed to evaluate the hepatotoxic and genotoxic effects that ciprofloxacin alone and in combination with paracetamol may induce in Danio rerio adults. For this purpose, we exposed several D. rerio adults to three environmentally relevant concentrations of PCM (0.125, 0.250, and 0.500 µg/L), CPX (0.250, 0.500, and 1 µg/L), and their mixture (0.125 + 0.250, 0.250 + 0.500, and 0.500 + 1 µg/L) for 96 h. The blood samples showed CPX alone and in combination with PCM damaged the liver function of fish by increasing the serum levels of liver enzymes alanine aminotransferase and alkaline phosphatase. Moreover, our histopathological study demonstrated liver of fish suffered several tissue alterations, such as congestion, hyperemia, infiltration, sinusoidal dilatation, macrovascular fatty degeneration, and pyknotic nuclei after exposure to CPX alone and in combination with PCM. Concerning oxidative stress biomarkers and the expression of genes, we demonstrated that CPX and its mixture, with PCM, increased the levels of antioxidant enzymes and oxidative damage biomarkers and altered the expression of Nrf1, Nrf2, BAX, and CASP3, 6, 8, and 9 in the liver of fish. Last but not least, we demonstrated CPX alone and with PCM induced DNA damage via comet assay and increased the frequency of micronuclei in a concentration-dependent manner in fish. Overall, our results let us point out CPX, even at low concentrations, induces hepatotoxic effects in fish and that its combination with PCM has a negative synergic effect in the liver of this organism.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetaminofen/toxicidade , Animais , Ciprofloxacina/toxicidade , Dano ao DNA , Fígado , Estresse Oxidativo , Regulação para Cima , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
2.
Sci Total Environ ; 806(Pt 2): 150541, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34601175

RESUMO

Even though the toxic effects of paracetamol (PCM) and ciprofloxacin (CPX) have been deeply studied in the last decades, the impact of the PCM-CPX mixture may induce in aquatic organisms is poorly known. Thus, the objective of this work was to investigate the teratogenic effects and oxidative stress that PCM, CPX, and their mixture induce in Danio rerio embryos. Moreover, we aimed to determine whether the PCM-CPX mixture induces more severe effects on the embryos than the individual drugs. For this purpose, zebrafish embryos (4 hpf) were exposed to environmentally relevant concentrations of PCM, CPX, and their mixture until 96 hpf. In addition, at 72 hpf and 96 hpf, we also evaluated the oxidative stress biomarkers (superoxide dismutase, catalase, glutathione peroxidase, lipid peroxidation, and hydroperoxides and carbonyl content) in the embryos. Our results demonstrated that PCM, CPX, and their mixture reduced the survival rate of embryos by up to 75%. In addition, both drugs, induced morphological alterations in the embryos, causing their death. The most observed malformations were: scoliosis, craniofacial malformations, hypopigmentation, growth retardation, pericardial edema. Concerning oxidative stress, our integrated biomarkers response (IBR) analysis demonstrated that PCM, CPX, and their mixture induce oxidative damage on the embryos. In conclusion, PCM, CPX, and their mixture can alter zebrafish embryonic development via an oxidative stress response.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Animais , Ciprofloxacina/metabolismo , Ciprofloxacina/toxicidade , Embrião não Mamífero/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
3.
Sci Total Environ ; 775: 145671, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-33621872

RESUMO

Fenitrothion is an organophosphorus insecticide usually found in aquatic ecosystems at concentrations in the range of low ng/L. In this manuscript we show that 24 h exposure to environmental concentrations of fenitrothion, from ng/L to low µg/L, altered basal locomotor activity, visual-motor response and acoustic/vibrational escape response of zebrafish larvae. Furthermore, fenitrothion and expression of gap43a, gfap, atp2b1a, and mbp exhibited a significant non-monotonic concentration-response relationship. Once determined that environmental concentrations of fenitrothion were neurotoxic for zebrafish larvae, a computational analysis identified potential protein targets of this compound. Some of the predictions, including interactions with acetylcholinesterase, monoamine-oxidases and androgen receptor (AR), were experimentally validated. Binding to AR was the most suitable candidate for molecular initiating event, as indicated by both the up-regulation of cyp19a1b and sult2st3 and the non-monotonic relationship found between fenitrothion and the observed responses. Finally, when the integrity of the monoaminergic system was evaluated, altered levels of L-DOPA, DOPAC, HVA and 5-HIAA were found, as well as a significant up-regulation of slc18a2 expression at the lowest concentrations of fenitrothion. These data strongly suggest that concentrations of fenitrothion commonly found in aquatic ecosystems present a significant environmental risk for fish communities.


Assuntos
Fenitrotion , Inseticidas , Androgênios , Animais , Ecossistema , Fenitrotion/toxicidade , Inseticidas/toxicidade , Larva , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...