Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(7): 3840-3862, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35244390

RESUMO

Mercury (Hg) and especially its methylated species (MeHg) are toxic chemicals that contaminate humans via the consumption of seafood. The most recent UNEP Global Mercury Assessment stressed that Mediterranean populations have higher Hg levels than people elsewhere in Europe. The present Critical Review updates current knowledge on the sources, biogeochemical cycling, and mass balance of Hg in the Mediterranean and identifies perspectives for future research especially in the context of global change. Concentrations of Hg in the Western Mediterranean average 0.86 ± 0.27 pmol L-1 in the upper water layer and 1.02 ± 0.12 pmol L-1 in intermediate and deep waters. In the Eastern Mediterranean, Hg measurements are in the same range but are too few to determine any consistent oceanographical pattern. The Mediterranean waters have a high methylation capacity, with MeHg representing up to 86% of the total Hg, and constitute a source of MeHg for the adjacent North Atlantic Ocean. The highest MeHg concentrations are associated with low oxygen water masses, suggesting a microbiological control on Hg methylation, consistent with the identification of hgcA-like genes in Mediterranean waters. MeHg concentrations are twice as high in the waters of the Western Basin compared to the ultra-oligotrophic Eastern Basin waters. This difference appears to be transferred through the food webs and the Hg content in predators to be ultimately controlled by MeHg concentrations of the waters of their foraging zones. Many Mediterranean top-predatory fish still exceed European Union regulatory Hg thresholds. This emphasizes the necessity of monitoring the exposure of Mediterranean populations, to formulate adequate mitigation strategies and recommendations, without advising against seafood consumption. This review also points out other insufficiencies of knowledge of Hg cycling in the Mediterranean Sea, including temporal variations in air-sea exchange, hydrothermal and cold seep inputs, point sources, submarine groundwater discharge, and exchanges between margins and the open sea. Future assessment of global change impacts under the Minamata Convention Hg policy requires long-term observations and dedicated high-resolution Earth System Models for the Mediterranean region.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Humanos , Mar Mediterrâneo , Mercúrio/química , Compostos de Metilmercúrio/análise , Poluentes Químicos da Água/análise
2.
Sci Total Environ ; 743: 140586, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32659553

RESUMO

During the industrial period, significant amounts of mercury (Hg) were discharged into the Venice Lagoon. Here, a spatially explicit model was implemented to reconstruct the temporal evolution of the total mercury (HgT) and methylmercury (MeHgT) concentrations in lagoon water and sediments over two centuries (1900-2100), from preindustrial to postindustrial phases. The model simulates the transport and transformations of particulate and dissolved Hg species. It is forced with time-variable Hg inputs and environmental conditions, including scenarios of future atmospheric deposition, reconstructed according to local and global socioeconomic scenarios. Since 1900, ~36 Mg of HgT and ~380 kg of MeHgT were delivered to the lagoon, and stored in the sediments. The deposition of Hg from the water to the seafloor increased during a period of eutrophication (1980s); however, the reverse fluxes increased during a period of high sediment resuspension caused by the unregulated fishing of Manila clams (1990s). In the current postindustrial phase, the lagoon sediments have acted as a secondary source to the lagoon waters, delivering Hg (~38 kg y-1) and MeHg (~0.07 kg y-1). The MeHg inputs from the watershed (~0.28 kg y-1) appear to be higher than the secondary fluxes from the sediments. The estimated HgT export to the Adriatic Sea is ~56 kg y-1. Since HgT and MeHgT outputs slightly exceed inputs, the concentrations are slowly decreasing. While the decreasing trend is maintained in all scenarios, the future level of atmospheric deposition will affect Hg concentrations and sediment recovery times. Though limited by inherent simplifications, this work results show that the reconstruction of historical dynamics using a holistic approach, supported by data, can improve our understanding of the pollutants distribution and the quantification of local emissions. Downscaling from trends predicted at the global scale taking into account for regional differences seems useful to investigate the pollutants fate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...