Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Cell Rep ; 43(7): 114432, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38963762

RESUMO

The human pathogen Streptococcus pneumoniae (Spn) encodes several cell-cell communication systems, notably multiple members of the Rgg/SHP and the Tpr/Phr families. Until now, members of these diverse communication systems were thought to work independently. Our study reveals that the ABC transporter PptAB and the transmembrane enzyme Eep act as a molecular link between Rgg/SHP and TprA/PhrA systems. We demonstrate that PptAB/Eep activates the Rgg/SHP systems and represses the TprA/PhrA system. Specifically, they regulate the respective precursor peptides (SHP and PhrA) before these leave the cell. This dual mode of action leads to temporal coordination of these systems, producing an overlap between their respective regulons during host cell infection. Thus, we have identified a single molecular mechanism that targets diverse cell-cell communication systems in Spn. Moreover, these molecular components are encoded by many gram-positive bacteria, suggesting that this mechanism may be broadly conserved.

2.
Front Cell Infect Microbiol ; 14: 1352810, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601738

RESUMO

Commensal gut bacteria use oleate hydratase to release a spectrum of hydroxylated fatty acids using host-derived unsaturated fatty acids. These compounds are thought to attenuate the immune response, but the underlying signaling mechanism(s) remain to be established. The pathogen Staphylococcus aureus also expresses an oleate hydratase and 10-hydroxyoctadecanoic acid (h18:0) is the most abundant oleate hydratase metabolite found at Staphylococcal skin infection sites. Here, we show h18:0 stimulates the transcription of a set of lipid metabolism genes associated with the activation of peroxisome proliferator activated receptor (PPAR) in the RAW 264.7 macrophage cell line and mouse primary bone marrow-derived macrophages. Cell-based transcriptional reporter assays show h18:0 selectively activates PPARα. Radiolabeling experiments with bone marrow-derived macrophages show [1-14C]h18:0 is not incorporated into cellular lipids, but is degraded by ß-oxidation, and mass spectrometry detected shortened fragments of h18:0 released into the media. The catabolism of h18:0 was >10-fold lower in bone marrow-derived macrophages isolated from Ppara -/- knockout mice, and we recover 74-fold fewer S. aureus cells from the skin infection site of Ppara -/- knockout mice compared to wildtype mice. These data identify PPARα as a target for oleate hydratase-derived hydroxy fatty acids and support the existence of an oleate hydratase-PPARα signaling axis that functions to suppress the innate immune response to S. aureus.


Assuntos
PPAR alfa , Staphylococcus aureus , Camundongos , Animais , PPAR alfa/metabolismo , Staphylococcus aureus/metabolismo , Ácido Oleico , Ácidos Graxos/metabolismo , Camundongos Knockout
3.
Cell Chem Biol ; 31(2): 185-186, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38364773

RESUMO

In an interview with Samantha Nelson, a scientific editor for Cell Chemical Biology, the authors of the review entitled "Convergent impact of vaccination and antibiotic pressures on pneumococcal populations" share their perspectives on life as scientists.


Assuntos
Antibacterianos , Vacinação , Antibacterianos/farmacologia , Vacinas Pneumocócicas
4.
mBio ; 15(2): e0282823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193698

RESUMO

Streptococcus pneumoniae is a major human pathogen of global health concern and the rapid emergence of antibiotic resistance poses a serious public health problem worldwide. Fluoroquinolone resistance in S. pneumoniae is an intriguing case because the prevalence of fluoroquinolone resistance does not correlate with increasing usage and has remained rare. Our data indicate that deleterious fitness costs in the mammalian host constrain the emergence of fluoroquinolone resistance both by de novo mutation and recombination. S. pneumoniae was able to circumvent such deleterious fitness costs via the development of antibiotic tolerance through metabolic adaptation that reduced the production of reactive oxygen species, resulting in a fitness benefit during infection of mice treated with fluoroquinolones. These data suggest that the emergence of fluoroquinolone resistance is tightly constrained in S. pneumoniae by fitness tradeoffs and that mutational pathways involving metabolic networks to enable tolerance phenotypes are an important contributor to the evasion of antibiotic-mediated killing.IMPORTANCEThe increasing prevalence of antibiotic resistant bacteria is a major global health concern. While many species have the potential to develop antibiotic resistance, understanding the barriers to resistance emergence in the clinic remains poorly understood. A prime example of this is fluroquinolone resistance in Streptococcus pneumoniae, whereby, despite continued utilization, resistance to this class of antibiotic remains rare. In this study, we found that the predominant pathways for developing resistance to this antibiotic class severely compromised the infectious capacity of the pneumococcus, providing a key impediment for the emergence of resistance. Using in vivo models of experimental evolution, we found that S. pneumoniae responds to repeated fluoroquinolone exposure by modulating key metabolic pathways involved in the generation of redox molecules, which leads to antibiotic treatment failure in the absence of appreciable shifts in resistance levels. These data underscore the complex pathways available to pathogens to evade antibiotic mediating killing via antibiotic tolerance.


Assuntos
Fluoroquinolonas , Infecções Pneumocócicas , Humanos , Animais , Camundongos , Fluoroquinolonas/farmacologia , Streptococcus pneumoniae/metabolismo , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Mamíferos
5.
Cell Chem Biol ; 31(2): 195-206, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38052216

RESUMO

Streptococcus pneumoniae is a remarkably adaptable and successful human pathogen, playing dual roles of both asymptomatic carriage in the nasopharynx and invasive disease including pneumonia, bacteremia, and meningitis. Efficacious vaccines and effective antibiotic therapies are critical to mitigating morbidity and mortality. However, clinical interventions can be rapidly circumvented by the pneumococcus by its inherent proclivity for genetic exchange. This leads to an underappreciated interplay between vaccine and antibiotic pressures on pneumococcal populations. Circulating populations have undergone dramatic shifts due to the introduction of capsule-based vaccines of increasing valency imparting strong selective pressures. These alterations in population structure have concurrent consequences on the frequency of antibiotic resistance profiles in the population. This review will discuss the interactions of these two selective forces. Understanding and forecasting the drivers of antibiotic resistance and capsule switching are of critical importance for public health, particularly for such a genetically promiscuous pathogen as S. pneumoniae.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/prevenção & controle , Infecções Pneumocócicas/epidemiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Vacinas Pneumocócicas , Vacinação , Vacinas Conjugadas
6.
PLoS Pathog ; 19(5): e1011421, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37256908

RESUMO

Streptococcus pneumoniae is an opportunistic pathogen that colonizes the upper respiratory tract asymptomatically and, upon invasion, can lead to severe diseases including otitis media, sinusitis, meningitis, bacteremia, and pneumonia. One of the first lines of defense against pneumococcal invasive disease is inflammation, including the recruitment of neutrophils to the site of infection. The invasive pneumococcus can be cleared through the action of serine proteases generated by neutrophils. It is less clear how serine proteases impact non-invasive pneumococcal colonization, which is the key first step to invasion and transmission. One significant aspect of pneumococcal biology and adaptation in the respiratory tract is its natural competence, which is triggered by a small peptide CSP. In this study, we investigate if serine proteases are capable of degrading CSP and the impact this has on pneumococcal competence. We found that CSP has several potential sites for trypsin-like serine protease degradation and that there were preferential cleavage sites recognized by the proteases. Digestion of CSP with two different trypsin-like serine proteases dramatically reduced competence in a dose-dependent manner. Incubation of CSP with mouse lung homogenate also reduced recombination frequency of the pneumococcus. These ex vivo experiments suggested that serine proteases in the lower respiratory tract reduce pneumococcal competence. This was subsequently confirmed measuring in vivo recombination frequencies after induction of protease production via poly (I:C) stimulation and via co-infection with influenza A virus, which dramatically lowered recombination events. These data shed light on a new mechanism by which the host can modulate pneumococcal behavior and genetic exchange via direct degradation of the competence signaling peptide.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Camundongos , Streptococcus pneumoniae/genética , Inflamação , Serina Proteases , Peptídeos
7.
Cell Rep Methods ; 3(2): 100410, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36936076

RESUMO

The separation of pneumococcal serotypes from a complex polymicrobial mixture may be required for different applications. For instance, a minority strain could be present at a low frequency in a clinical sample, making it difficult to identify and isolate by traditional culture-based methods. We therefore developed an assay to separate mixed pneumococcal samples using serotype-specific antiserum and a magnetic bead-based separation method. Using qPCR and colony counting methods, we first show that serotypes (12F, 23F, 3, 14, 19A, and 15A) present at ∼0.1% of a dual serotype mixture can be enriched to between 10% and 90% of the final sample. We demonstrate two applications for this method: extraction of known pneumococcal serotypes from saliva samples and efficient purification of capsule switch variants from experimental transformation experiments. This method may have further laboratory or clinical applications when the selection of specific serotypes is required.


Assuntos
Fenômenos Magnéticos , Streptococcus pneumoniae , Sorogrupo , Streptococcus pneumoniae/genética
8.
mBio ; 14(1): e0332522, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625598

RESUMO

Streptococcus pneumoniae colonizes the human nasopharynx and causes several diseases. Pneumococcal vaccines target the polysaccharide capsule and prevent most serious disease, but there has been an increase in the prevalence of nonencapsulated S. pneumoniae (NESp). Previously, it was thought that a capsule was necessary to cause invasive disease. NESp strains expressing the oligopeptide transporters AliC and AliD have been isolated from patients with invasive disease. The AliC and AliD oligopeptide transporters regulate the expression of several genes, including choline binding protein AC (CbpAC) (a homolog of PspA), which aids in reducing C3b deposition. It is hypothesized that by altering CbpAC expression, AliC and AliD provide protection from classical complement-mediated clearance by reducing C-reactive protein (CRP) binding. Our study demonstrates that AliC and AliD regulate CbpAC expression in NESp and that AliD found in certain serotypes of encapsulated strains regulates PspA expression. C3b deposition was increased in the NESp ΔaliD and encapsulated mutants in comparison to the wild type. NESp strains expressing AliC and AliD have a significant decrease in C1q and CRP deposition in comparison to the ΔaliC ΔaliD mutant. The complement protein C1q is required for NESp clearance in a murine model and increases opsonophagocytosis. By regulating CbpAC expression, NESp inhibits CRP binding to the bacterial surface and blocks classical complement activation, leading to greater systemic survival and virulence. Due to the increase in the prevalence of NESp, it is important to gain a better understanding of NESp virulence mechanisms that aid in establishing disease and persistence within a host by avoiding clearance by the immune system. IMPORTANCE Streptococcus pneumoniae (pneumococcus) can cause a range of diseases. Although there is a robust pneumococcal vaccination program that reduces invasive pneumococcal disease by targeting various polysaccharide capsules, there has been an increase in the isolation of nonvaccine serotypes and nonencapsulated S. pneumoniae (NESp) strains. While most studies of pneumococcal pathogenesis have focused on encapsulated strains, there is little understanding of how NESp causes disease. NESp lacks a protective capsule but contains novel genes, such as aliC and aliD, which have been shown to regulate the expression of numerous genes and to be required for NESp virulence and immune evasion. Furthermore, NESp strains have high transformation efficiencies and harbor resistance to multiple drugs. This could be deleterious to current treatment strategies employed for pneumococcal disease as NESp can be a reservoir of drug resistance genes. Therefore, deciphering how NESp survives within a host and facilitates disease is a necessity that will allow the fabrication of improved, broad-spectrum treatments and preventatives against pneumococcal disease. Our study provides a better understanding of NESp virulence mechanisms during host-pathogen interactions through the examination of genes directly regulated by the NESp proteins AliC and AliD.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Animais , Humanos , Camundongos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Colina/metabolismo , Complemento C1q , Darbepoetina alfa/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Infecções Pneumocócicas/microbiologia
9.
J Inorg Biochem ; 240: 112122, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639322

RESUMO

Maintenance of intracellular metal homeostasis during interaction with host niches is critical to the success of bacterial pathogens. To prevent infection, the mammalian innate immune response employs metal-withholding and metal-intoxication mechanisms to limit bacterial propagation. The first-row transition metal ion copper serves critical roles at the host-pathogen interface and has been associated with antimicrobial activity since antiquity. Despite lacking any known copper-utilizing proteins, streptococci have been reported to accumulate significant levels of copper. Here, we report that loss of CopA, a copper-specific exporter, confers increased sensitivity to copper in Streptococcus pyogenes strain HSC5, with prolonged exposure to physiological levels of copper resulting in reduced viability during stationary phase cultivation. This defect in stationary phase survival was rescued by supplementation with exogeneous amino acids, indicating the pathogen had altered nutritional requirements during exposure to copper stress. Furthermore, S. pyogenes HSC5 ΔcopA was substantially attenuated during murine soft-tissue infection, demonstrating the importance of copper efflux at the host-pathogen interface. Collectively, these data indicate that copper can severely reduce the viability of stationary phase S. pyogenes and that active efflux mechanisms are required to survive copper stress in vitro and during infection.


Assuntos
Cobre , Streptococcus pyogenes , Camundongos , Animais , Cobre/metabolismo , Virulência , Streptococcus pyogenes/metabolismo , Proteínas de Bactérias/química , Homeostase , Regulação Bacteriana da Expressão Gênica , Mamíferos/metabolismo
10.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168155

RESUMO

Bacterial cells secrete extracellular vesicles (EVs), the function of which is a matter of intense investigation. Here, we show that the EVs secreted by the human pathogen Streptococcus pneumoniae (pneumococcus) are associated with bacterial DNA on their surface and can deliver this DNA to the transformation machinery of competent cells. These findings suggest that EVs contribute to gene transfer in Gram-positive bacteria, and in doing so, may promote the spread of drug resistance genes in the population.

11.
Cell Rep ; 41(11): 111835, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516783

RESUMO

As opposed to de novo mutation, ß-lactam resistance in S. pneumoniae is often conferred via homologous recombination during horizontal gene transfer. We hypothesize that ß-lactam resistance in pathogenic streptococci is restricted to naturally competent species via intra-/interspecies recombination due to in vivo fitness trade-offs of de novo penicillin-binding protein (PBP) mutations. We show that de novo mutant populations have abrogated invasive disease capacity and are difficult to evolve in vivo. Conversely, serially transformed recombinant strains efficiently integrate resistant oral streptococcal DNA, gain penicillin resistance and tolerance, and retain virulence in mice. Large-scale changes in pbp2X, pbp2B, and non-PBP-related genes occur in recombinant isolates. Our results indicate that horizontal transfer of ß-lactam resistance engenders initially favorable or minimal cost changes in vivo compared with de novo mutation(s), underscoring the importance of recombination in the emergence of ß-lactam resistance and suggesting why some pathogenic streptococci lacking innate competence remain universally susceptible.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Camundongos , Animais , Streptococcus pneumoniae/genética , Transferência Genética Horizontal , Virulência/genética , Testes de Sensibilidade Microbiana , Resistência beta-Lactâmica/genética , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Mutação/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo
12.
PLoS Pathog ; 18(12): e1011020, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542660

RESUMO

BACKGROUND: For almost a century, it has been recognized that influenza A virus (IAV) infection can promote the development of secondary bacterial infections (SBI) mainly caused by Streptococcus pneumoniae (Spn). Recent observations have shown that IAV is able to directly bind to the surface of Spn. To gain a foundational understanding of how direct IAV-Spn interaction alters bacterial biological fitness we employed combinatorial multiomic and molecular approaches. RESULTS: Here we show IAV significantly remodels the global transcriptome, proteome and phosphoproteome profiles of Spn independently of host effectors. We identified Spn surface proteins that interact with IAV proteins (hemagglutinin, nucleoprotein, and neuraminidase). In addition, IAV was found to directly modulate expression of Spn virulence determinants such as pneumococcal surface protein A, pneumolysin, and factors associated with antimicrobial resistance among many others. Metabolic pathways were significantly altered leading to changes in Spn growth rate. IAV was also found to drive Spn capsule shedding and the release of pneumococcal surface proteins. Released proteins were found to be involved in evasion of innate immune responses and actively reduced human complement hemolytic and opsonizing activity. IAV also led to phosphorylation changes in Spn proteins associated with metabolism and bacterial virulence. Validation of proteomic data showed significant changes in Spn galactose and glucose metabolism. Furthermore, supplementation with galactose rescued bacterial growth and promoted bacterial invasion, while glucose supplementation led to enhanced pneumolysin production and lung cell apoptosis. CONCLUSIONS: Here we demonstrate that IAV can directly modulate Spn biology without the requirement of host effectors and support the notion that inter-kingdom interactions between human viruses and commensal pathobionts can promote bacterial pathogenesis and microbiome dysbiosis.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Humanos , Streptococcus pneumoniae/metabolismo , Vírus da Influenza A/genética , Virulência , Galactose/metabolismo , Multiômica , Proteômica , Influenza Humana/genética , Influenza Humana/complicações
13.
Nat Microbiol ; 7(10): 1580-1592, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36097170

RESUMO

Many bacterial species are represented by a pan-genome, whose genetic repertoire far outstrips that of any single bacterial genome. Here we investigate how a bacterial pan-genome might influence gene essentiality and whether essential genes that are initially critical for the survival of an organism can evolve to become non-essential. By using Transposon insertion sequencing (Tn-seq), whole-genome sequencing and RNA-seq on a set of 36 clinical Streptococcus pneumoniae strains representative of >68% of the species' pan-genome, we identify a species-wide 'essentialome' that can be subdivided into universal, core strain-specific and accessory essential genes. By employing 'forced-evolution experiments', we show that specific genetic changes allow bacteria to bypass essentiality. Moreover, by untangling several genetic mechanisms, we show that gene essentiality can be highly influenced by and/or be dependent on: (1) the composition of the accessory genome, (2) the accumulation of toxic intermediates, (3) functional redundancy, (4) efficient recycling of critical metabolites and (5) pathway rewiring. While this functional characterization underscores the evolvability potential of many essential genes, we also show that genes with differential essentiality remain important antimicrobial drug target candidates, as their inactivation almost always has a severe fitness cost in vivo.


Assuntos
Elementos de DNA Transponíveis , Genoma Bacteriano , Genes Essenciais/genética , Genoma Bacteriano/genética , Streptococcus pneumoniae/genética , Sequenciamento Completo do Genoma
14.
Front Cell Infect Microbiol ; 12: 886901, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694536

RESUMO

Apoptosis of cells at the site of infection is a requirement for shutdown of inflammatory signaling, avoiding tissue damage, and preventing progression of sepsis. Puma+/+ and Puma-/- mice were challenged with TIGR4 strain pneumococcus and cytokines were quantitated from lungs and blood using a magnetic bead panel analysis. Puma-/- mice exhibited higher lung and blood cytokine levels of several major inflammatory cytokines, including IL-6, G-CSF, RANTES, IL-12, IFN-ϒ, and IP-10. Puma-/- mice were more susceptible to bacterial dissemination and exhibited more weight loss than their wild-type counterparts. RNA sequencing analysis of whole pulmonary tissue revealed Puma-dependent regulation of Nrxn2, Adam19, and Eln. Enrichment of gene ontology groups differentially expressed in Puma-/- tissues were strongly correlated to IFN-ß and -ϒ signaling. Here, we demonstrate for the first time the role of Puma in prohibition of the cytokine storm during bacterial pneumonia. These findings further suggest a role for targeting immunomodulation of IFN signaling during pulmonary inflammation. Additionally, our findings suggest previously undemonstrated roles for genes encoding regulatory and binding proteins during the early phase of the innate immune response of pneumococcal pneumonia.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Pneumonia Pneumocócica , Proteínas Supressoras de Tumor/metabolismo , Animais , Citocinas/metabolismo , Pulmão/microbiologia , Camundongos , Streptococcus pneumoniae/metabolismo
15.
Nat Commun ; 13(1): 3165, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672367

RESUMO

Detailed knowledge on how bacteria evade antibiotics and eventually develop resistance could open avenues for novel therapeutics and diagnostics. It is thereby key to develop a comprehensive genome-wide understanding of how bacteria process antibiotic stress, and how modulation of the involved processes affects their ability to overcome said stress. Here we undertake a comprehensive genetic analysis of how the human pathogen Streptococcus pneumoniae responds to 20 antibiotics. We build a genome-wide atlas of drug susceptibility determinants and generated a genetic interaction network that connects cellular processes and genes of unknown function, which we show can be used as therapeutic targets. Pathway analysis reveals a genome-wide atlas of cellular processes that can make a bacterium less susceptible, and often tolerant, in an antibiotic specific manner. Importantly, modulation of these processes confers fitness benefits during active infections under antibiotic selection. Moreover, screening of sequenced clinical isolates demonstrates that mutations in genes that decrease antibiotic sensitivity and increase tolerance readily evolve and are frequently associated with resistant strains, indicating such mutations could be harbingers for the emergence of antibiotic resistance.


Assuntos
Antibacterianos , Streptococcus pneumoniae , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Tolerância a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
16.
Nat Microbiol ; 7(6): 796-809, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618774

RESUMO

Acinetobacter baumannii is increasingly refractory to antibiotic treatment in healthcare settings. As is true of most human pathogens, the genetic path to antimicrobial resistance (AMR) and the role that the immune system plays in modulating AMR during disease are poorly understood. Here we reproduced several routes to fluoroquinolone resistance, performing evolution experiments using sequential lung infections in mice that are replete with or depleted of neutrophils, providing two key insights into the evolution of drug resistance. First, neutropenic hosts acted as reservoirs for the accumulation of drug resistance during drug treatment. Selection for variants with altered drug sensitivity profiles arose readily in the absence of neutrophils, while immunocompetent animals restricted the appearance of these variants. Secondly, antibiotic treatment failure in the immunocompromised host was shown to occur without clinically defined resistance, an unexpected result that provides a model for how antibiotic failure occurs clinically in the absence of AMR. The genetic mechanism underlying both these results is initiated by mutations activating the drug egress pump regulator AdeL, which drives persistence in the presence of antibiotic. Therefore, antibiotic persistence mutations present a two-pronged risk during disease, causing drug treatment failure in the immunocompromised host while simultaneously increasing the emergence of high-level AMR.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Infecções por Acinetobacter/tratamento farmacológico , Acinetobacter baumannii/genética , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Terapia de Imunossupressão , Camundongos , Falha de Tratamento
17.
FEMS Microbes ; 3: xtac007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392116

RESUMO

Secondary bacterial infection is a common complication in severe influenza virus infections. During the H1N1 pandemic of 2009, increased mortality was observed among healthy young adults due to secondary bacterial pneumonia, one of the most frequent bacterial species being Streptococcus pneumoniae (Spn). Previous studies in mice and ferrets have suggested a synergistic relationship between Spn and influenza viruses. In this study, the ferret model was used to examine whether secondary Spn infection (strains BHN97 and D39) influence replication and airborne transmission of the 2009 pandemic H1N1 virus (H1N1pdm09). Secondary infection with Spn after H1N1pdm09 infection consistently resulted in a significant decrease in viral titers in the ferret nasal washes. While secondary Spn infection appeared to negatively impact influenza virus replication, animals precolonized with Spn were equally susceptible to H1N1pdm09 airborne transmission. In line with previous work, ferrets with preceding H1N1pdm09 and secondary Spn infection had increased bacterial loads and more severe clinical symptoms as compared to animals infected with H1N1pdm09 or Spn alone. Interestingly, the donor animals that displayed the most severe clinical symptoms had reduced airborne transmission of H1N1pdm09. Based on these data, we propose an asymmetrical relationship between these two pathogens, rather than a synergistic one, since secondary bacterial infection enhances Spn colonization and pathogenesis but decreases viral titers.

18.
Cell Rep ; 38(2): 110202, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021083

RESUMO

Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to ß-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.


Assuntos
Resistência a Ampicilina/fisiologia , Streptococcus pneumoniae/metabolismo , Zinco/metabolismo , Ampicilina/farmacologia , Resistência a Ampicilina/genética , Animais , Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Clioquinol/farmacologia , Modelos Animais de Doenças , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pneumonia
19.
Clin Infect Dis ; 75(4): 647-656, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34891152

RESUMO

BACKGROUND: Carriage studies are fundamental to assessing the effects of pneumococcal vaccines. Because a large proportion of oral streptococci carry homologues of pneumococcal genes, non-culture-based detection and serotyping of upper respiratory tract (URT) samples can be problematic. In the current study, we investigated whether culture-free molecular methods could differentiate pneumococci from oral streptococci carried by adults in the URT. METHODS: Paired nasopharyngeal (NP) and oropharyngeal (OP) samples were collected from 100 older adults twice a month for 1 year. Extracts from the combined NP + OP samples (n = 2400) were subjected to lytA real-time polymerase chain reaction (PCR). Positive samples were subjected to pure culture isolation, followed by species confirmation using multiple approaches. Multibead assays and whole-genome sequencing were used for serotyping. RESULTS: In 20 of 301 combined NP + OP extracts with positive lytA PCR results, probable pneumococcus-like colonies grew, based on colony morphology and biochemical tests. Multiple approaches confirmed that 4 isolates were Streptococcus pneumoniae, 3 were Streptococcus pseudopneumoniae, 12 were Streptococcus mitis, and 1 were Streptococcus oralis. Eight nonpneumococcal strains carried pneumococcus-like cps loci (approximate size, 18-25 kb) that showed >70% nucleotide identity with their pneumococcal counterparts. While investigating the antigenic profile, we found that some S. mitis strains (P066 and P107) reacted with both serotype-specific polyclonal (type 39 and FS17b) and monoclonal (Hyp10AG1 and Hyp17FM1) antisera, whereas some strains (P063 and P074) reacted only with polyclonal antisera (type 5 and FS35a). CONCLUSION: The extensive capsular overlap suggests that pneumococcal vaccines could reduce carriage of oral streptococci expressing cross-reactive capsules. Furthermore, direct use of culture-free PCR-based methods in URT samples has limited usefulness for carriage studies.


Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Idoso , Portador Sadio/diagnóstico , Humanos , Soros Imunes , Nasofaringe , Infecções Pneumocócicas/prevenção & controle , Vacinas Pneumocócicas , Reação em Cadeia da Polimerase em Tempo Real , Sorotipagem , Organização Mundial da Saúde
20.
J Med Microbiol ; 70(11)2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34779760

RESUMO

Streptococcus pneumoniae is a highly adept human pathogen. A frequent asymptomatic member of the respiratory microbiota, the pneumococcus has a remarkable capacity to cause mucosal (pneumonia and otitis media) and invasive diseases (bacteremia, meningitis). In addition, the organism utilizes a vast battery of virulence factors for tissue and immune evasion. Though recognized as a significant cause of pneumonia for over a century, efforts to develop more effective vaccines remain ongoing. The pathogen's inherent capacity to exchange genetic material is critical to the pneumococcus' success. This feature historically facilitated essential discoveries in genetics and is vital for disseminating antibiotic resistance and vaccine evasion.


Assuntos
Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae , Bacteriemia , Humanos , Otite Média , Vacinas Pneumocócicas , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/imunologia , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...