Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 6(8): 2038-2058, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38633049

RESUMO

In this study, hybrid bio-nanoporous peptides loaded onto poly(N-isopropylacrylamide-co-butylacrylate) (pNIPAM-co-BA) coatings were designed and obtained via matrix-assisted pulsed laser evaporation (MAPLE) technique. The incorporation of cationic peptides magainin (MG) and melittin (Mel) and their combination was tailored to target synergistic anticancer and antibacterial activities with low toxicity on normal mammalian cells. Atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy as well as contact angle and surface energy measurements revealed the successful and functional incorporation of both the peptides within porous polymeric nanolayers as well as surface modifications (i.e. variation in the pore size diameter, surface roughness, and wettability) after Mel, MG or Mel-MG incorporation compared to pNIPAM-co-BA. In vitro testing revealed the impairment of biofilm formation on all the hybrid coatings while testing with S. aureus, E. coli and P. aeruginosa. Moreover, MG was shown to modulate the effect of Mel in the combined Mel-MG extract formulation released via pNIPAM-platforms, thus significantly reducing cancer cell proliferation through apoptosis/necrosis as revealed by flow cytometry analysis performed in vitro on HEK293T, A375, B16F1 and B16F10 cells. To the best of our knowledge, Mel-MG combination entrapped in the pNIPAM-co-BA copolymer has not yet been reported as a new promising candidate with anticancer and antibacterial properties for improved utility in the biomedical field. Mel-MG incorporation compared to pNIPAM-co-BA in in vitro testing revealed the impairment of biofilm formation in all the hybrid formulations.

2.
Int J Mol Sci ; 23(7)2022 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-35409347

RESUMO

Designing and obtaining new synthetic smart biointerfaces with specific and controlled characteristics relevant for applications in biomedical and bioengineering domains represents one of the main challenges in these fields. In this work, Matrix-Assisted Pulsed Laser Evaporation (MAPLE) is used to obtain synthetic biointerfaces of poly(N-isopropyl acrylamide-butyl acrylate) p(NIPAM-BA) copolymer with different characteristics (i.e., roughness, porosity, wettability), and their effect on normal HEK 293 T and murine melanoma B16-F1 cells is studied. For this, the influence of various solvents (chloroform, dimethylsulfoxide, water) and fluence variation (250-450 mJ/cm2) on the morphological, roughness, wettability, and physico-chemical characteristics of the coatings are evaluated by atomic force microscopy, scanning electron microscopy, contact angle measurements, Fourier-transform-IR spectroscopy, and X-ray photoelectron spectroscopy. Coatings obtained by the spin coating method are used for reference. No significant alteration in the chemistry of the surfaces is observed for the coatings obtained by both methods. All p(NIPAM-BA) coatings show hydrophilic character, with the exception of those obtained with chloroform at 250 mJ/cm2. The surface morphology is shown to depend on both solvent type and laser fluence and it ranges from smooth surfaces to rough and porous ones. Physico-chemical and biological analysis reveal that the MAPLE deposition method with fluences of 350-450 mJ/cm2 when using DMSO solvent is more appropriate for bioengineering applications due to the surface characteristics (i.e., pore presence) and to the good compatibility with normal cells and cytotoxicity against melanoma cells.


Assuntos
Clorofórmio , Melanoma , Acrilamidas , Acrilatos , Animais , Dimetil Sulfóxido , Células HEK293 , Humanos , Camundongos , Polímeros/química , Polímeros/farmacologia , Solventes , Propriedades de Superfície
3.
Nanomaterials (Basel) ; 13(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36615974

RESUMO

Nowadays, using polymers with specific characteristics to coat the surface of a device to prevent undesired biological responses can represent an optimal strategy for developing new and more efficient implants for biomedical applications. Among them, zwitterionic phosphorylcholine-based polymers are of interest due to their properties to resist cell and bacterial adhesion. In this work, the Matrix-Assisted Laser Evaporation (MAPLE) technique was investigated as a new approach for functionalising Polydimethylsiloxane (PDMS) surfaces with zwitterionic poly(2-Methacryloyloxyethyl-Phosphorylcholine) (pMPC) polymer. Evaluation of the physical-chemical properties of the new coatings revealed that the technique proposed has the advantage of achieving uniform and homogeneous stable moderate hydrophilic pMPC thin layers onto hydrophobic PDMS without any pre-treatment, therefore avoiding the major disadvantage of hydrophobicity recovery. The capacity of modified PDMS surfaces to reduce bacterial adhesion and biofilm formation was tested for Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli). Cell adhesion, proliferation and morphology of human THP-1 differentiated macrophages and human normal CCD-1070Sk fibroblasts on the different surfaces were also assessed. Biological in vitro investigation revealed a significantly reduced adherence on PDMS-pMPC of both E. coli (from 29 × 10 6 to 3 × 102 CFU/mL) and S. aureus (from 29 × 106 to 3 × 102 CFU/mL) bacterial strains. Additionally, coated surfaces induced a significant inhibition of biofilm formation, an effect observed mainly for E. coli. Moreover, the pMPC coatings improved the capacity of PDMS to reduce the adhesion and proliferation of human macrophages by 50% and of human fibroblast by 40% compared to unmodified scaffold, circumventing undesired cell responses such as inflammation and fibrosis. All these highlighted the potential for the new PDMS-pMPC interfaces obtained by MAPLE to be used in the biomedical field to design new PDMS-based implants exhibiting long-term hydrophilic profile stability and better mitigating foreign body response and microbial infection.

4.
Pharmaceutics ; 13(8)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452068

RESUMO

Osteoarthritis (OA) is a degenerative joint disease. An objective of the nanomedicine and drug delivery systems field is to design suitable pharmaceutical nanocarriers with controllable properties for drug delivery and site-specific targeting, in order to achieve greater efficacy and minimal toxicity, compared to the conventional drugs. The aim of this review is to present recent data on natural bioactive compounds with anti-inflammatory properties and efficacy in the treatment of OA, their formulation in lipid nanostructured carriers, mainly liposomes, as controlled release systems and the possibility to be intra-articularly (IA) administered. The literature regarding glycosaminoglycans, proteins, polyphenols and their ability to modify the cell response and mechanisms of action in different models of inflammation are reviewed. The advantages and limits of using lipid nanoformulations as drug delivery systems in OA treatment and the suitable route of administration are also discussed. Liposomes containing glycosaminoglycans presented good biocompatibility, lack of immune system activation, targeted delivery of bioactive compounds to the site of action, protection and efficiency of the encapsulated material, and prolonged duration of action, being highly recommended as controlled delivery systems in OA therapy through IA administration. Lipid nanoformulations of polyphenols were tested both in vivo and in vitro models that mimic OA conditions after IA or other routes of administration, recommending their clinical application.

5.
Polymers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925498

RESUMO

To modulate the biofunctionality of implantable medical devices commonly used in clinical practice, their surface modification with bioactive polymeric coatings is an attractive and successful emerging strategy. Biodegradable coatings based on poly(lactic acid-co-glycolic acid), PLGA, represent versatile and safe candidates for surface modification of implantable biomaterials and devices, providing additional tunable ability for topical delivery of desired therapeutic agents. In the present study, Ibuprofen-loaded PLGA coatings (PLGA/IBUP) were obtained by using the dip-coating and drop-casting combined protocol. The composite materials demonstrated long-term drug release under biologically simulated dynamic conditions. Reversible swelling phenomena of polymeric coatings occurred in the first two weeks of testing, accompanied by the gradual matrix degradation and slow release of the therapeutic agent. Irreversible degradation of PLGA coatings occurred after one month, due to copolymer's hydrolysis (evidenced by chemical and structural modifications). After 30 days of dynamic testing, the cumulative release of IBUP was ~250 µg/mL. Excellent cytocompatibility was revealed on human-derived macrophages, fibroblasts and keratinocytes. The results herein evidence the promising potential of PLGA/IBUP coatings to be used for surface modification of medical devices, such as metallic implants and wound dressings.

6.
Materials (Basel) ; 13(23)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33260907

RESUMO

Salecan is a microbial polysaccharide suitable to obtain hydrogel for biomedical applications due to the excellent hydrophilicity and biocompatibility properties. In this work, Salecan of different concentrations was introduced into polymethacrylic acid (PMAA) in the presence of clay to form novel semi synthetic hydrogel nanocomposites systems and loaded afterwards with doxorubicin (DOX). The physical-chemical characteristics of the nanocomposites systems and their effect on the viability, and morphology of MDBK (Madin-Darby bovine kidney), HT-29 human colorectal adenocarcinoma and Colo 205 human colon adenocarcinoma cell lines were investigated. DOX release from the nanocomposite systems, cell up-take and subsequent effect on cell proliferation was also analyzed. It was found that Salecan concentration determined the swelling behavior, structural parameters and morphological features of the nanocomposite systems. The hydrogen bonds strongly influenced the formation of PMAA-Salecan-clay systems, each component bringing its own contribution, thus demonstrating the achievement of an advanced crosslinked network and a more compacted hydrogel nanocomposite morphology. All the synthesized nanocomposites had negligible toxicity to normal MDBK cells and chemoresistent HT-29 cell line, whereas in the case of Colo 205 cells a decrease by 40% of the cell viability was obtained for the sample containing the highest amount of Salecan. This effect was correlated with the lowest pore size distribution leading to highest available specific surface area and entrapped amount of DOX which was further released from the nanocomposite sample. Corroborating all the data it can be suggested that the synthesized nanocomposites with Salecan and clay could be good candidates as vehicles for chemotherapeutic agents.

7.
Curr Med Chem ; 27(6): 838-853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31258057

RESUMO

Among the multiple properties exhibited by lactoferrin (Lf), its involvement in bone regeneration processes is of great interest at the present time. A series of in vitro and in vivo studies have revealed the ability of Lf to promote survival, proliferation and differentiation of osteoblast cells and to inhibit bone resorption mediated by osteoclasts. Although the mechanism underlying the action of Lf in bone cells is still not fully elucidated, it has been shown that its mode of action leading to the survival of osteoblasts is complemented by its mitogenic effect. Activation of several signalling pathways and gene expression, in an LRPdependent or independent manner, has been identified. Unlike the effects on osteoblasts, the action on osteoclasts is different, with Lf leading to a total arrest of osteoclastogenesis. Due to the positive effect of Lf on osteoblasts, the potential use of Lf alone or in combination with different biologically active compounds in bone tissue regeneration and the treatment of bone diseases is of great interest. Since the bioavailability of Lf in vivo is poor, a nanotechnology- based strategy to improve the biological properties of Lf was developed. The investigated formulations include incorporation of Lf into collagen membranes, gelatin hydrogel, liposomes, loading onto nanofibers, porous microspheres, or coating onto silica/titan based implants. Lf has also been coupled with other biologically active compounds such as biomimetic hydroxyapatite, in order to improve the efficacy of biomaterials used in the regulation of bone homeostasis. This review aims to provide an up-to-date review of research on the involvement of Lf in bone growth and healing and on its use as a potential therapeutic factor in bone tissue regeneration.


Assuntos
Regeneração Óssea , Osso e Ossos , Diferenciação Celular , Lactoferrina , Osteoblastos , Osteoclastos
8.
Materials (Basel) ; 12(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635291

RESUMO

The potential of mesenchymal stem cells (MSCs) for implantology and cell-based therapy represents one of the major ongoing research subjects within the last decades. In bone regeneration applications, the various environmental factors including bioactive compounds such as growth factors, chemicals and physical characteristics of biointerfaces are the key factors in controlling and regulating osteogenic differentiation from MSCs. In our study, we have investigated the influence of Lactoferrin (Lf) and Hydroxyapatite (HA) embedded within a biodegradable PEG-PCL copolymer on the osteogenic fate of MSCs, previous studies revealing an anti-inflammatory potential of the coating and osteogenic differentiation of murine pre-osteoblast cells. The copolymer matrix was obtained by the Matrix Assisted Pulsed Laser Evaporation technique (MAPLE) and the composite layers containing the bioactive compounds (Lf, HA, and Lf-HA) were characterised by Scanning Electron Microscopy and Atomic Force Microscopy. Energy-dispersive X-ray spectroscopy contact angle and surface energy of the analysed coatings were also measured. The characteristics of the composite surfaces were correlated with the viability, proliferation, and morphology of human MSCs (hMSCs) cultured on the developed coatings. All surfaces were found not to exhibit toxicity, as confirmed by the LIVE/DEAD assay. The Lf-HA composite exhibited an increase in osteogenic differentiation of hMSCs, results supported by alkaline phosphatase and mineralisation assays. This is the first report of the capacity of biodegradable composite layers containing Lf to induce osteogenic differentiation from hMSCs, a property revealing its potential for application in bone regeneration.

9.
Maedica (Bucur) ; 13(4): 273-281, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30774725

RESUMO

Nutrition and food are one of the most complex aspects of human lives, being influenced by biochemical, psychological, social and cultural factors. The Western diet is the prototype of modern dietary pattern and is mainly characterized by the intake of large amounts of red meat, dairy products, refined grains and sugar. Large amounts of scientific evidence positively correlate Western diet to acne, obesity, diabetes, heart disease and cancer, the so-called "diseases of civilization". The pathophysiological common ground of all these pathologies is the IGF-1 and mTORC pathways, which will be disscussed further in this paper.

10.
Nanomaterials (Basel) ; 7(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236090

RESUMO

Present study refers to the synthesis of new advanced materials based on poly(methacrylic acid) (PMAA) with previously reported own advanced modified clays by edge covalent bonding. This will create the premises to obtain nanocomposite hydrogels with combined hydrophilic-hydrophobic behavior absolutely necessary for co-delivery of polar/nonpolar substances. For the synthesis, N,N'-methylenebisacrylamide was used as cross-linker and ammonium persulphate as initiator. As a consequence of the inclusion of clay into the polymer matrix and the intercalation of PMAA between the layers as well as the presence of hydrophobic interactions occurred between partners, the final hydrogel nanocomposites possessed greater swelling degrees, slower de-swelling process and enhanced mechanical properties depending on the clay type in comparison with pure hydrogel. In vitro MTS ([3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt]) colorimetric assay showed that direct exposure with PMMA-clay-based constructs did not affect cell viability and proliferation in time (24 and 48 h) on either normal or adenocarcinoma cell lines.

11.
J Basic Microbiol ; 56(6): 591-607, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27059598

RESUMO

Microscopy techniques are often exploited by virologists to investigate molecular details of critical steps in viruses' life cycles such as host cell recognition and entry, genome replication, intracellular trafficking, and release of mature virions. Fluorescence microscopy is the most attractive tool employed to detect intracellular localizations of various stages of the viral infection and monitor the pathogen-host interactions associated with them. Super-resolution microscopy techniques have overcome the technical limitations of conventional microscopy and offered new exciting insights into the formation and trafficking of human viruses. In addition, the development of state-of-the art electron microscopy techniques has become particularly important in studying virus morphogenesis by revealing ground-braking ultrastructural details of this process. This review provides recent advances in human viruses imaging in both, in vitro cell culture systems and in vivo, in the animal models recently developed. The newly available imaging technologies bring a major contribution to our understanding of virus pathogenesis and will become an important tool in early diagnosis of viral infection and the development of novel therapeutics to combat the disease.


Assuntos
Microscopia Eletrônica/métodos , Microscopia de Fluorescência/métodos , Viroses/diagnóstico por imagem , Viroses/diagnóstico , Vírus/patogenicidade , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência/métodos , Interações Hospedeiro-Patógeno , Humanos , Fotodegradação
12.
J Biomed Mater Res A ; 103(11): 3599-611, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25976509

RESUMO

Polymeric nanoparticles (NPs) are known to facilitate intracellular uptake of drugs to improve their efficacy, with minimum bioreactivity. The goal of this study was to assess cellular uptake and trafficking of PLGA NPs and chitosan (Chi)-covered PLGA NPs in Madin-Darby bovine kidney (MDBK) and human colorectal adenocarcinoma (Colo 205) cells. Both PLGA and Chi-PLGA NPs were not cytotoxic to the studied cells at concentrations up to 2500 µg/mL. The positive charge conferred by the chitosan deposition on the PLGA NPs improved NPs uptake by MDBK cells. In this cell line, Chi-PLGA NPs colocalized partially with early endosomes compartment and showed a more consistent perinuclear localization than PLGA NPs. Kinetic uptake of PLGA NPs by Colo 205 was slower than that by MDBK cells, detected only at 24 h, exceeding that of Chi-PLGA NPs. This study offers new insights on NP interaction with target cells supporting the use of NPs as novel nutraceuticals/drug delivery systems in metabolic disorders or cancer therapy. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3599-3611, 2015.


Assuntos
Quitosana/farmacologia , Espaço Intracelular/metabolismo , Ácido Láctico/farmacologia , Nanopartículas/química , Ácido Poliglicólico/farmacologia , Animais , Bovinos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Endocitose/efeitos dos fármacos , Citometria de Fluxo , Humanos , Cinética , Microscopia de Fluorescência , Tamanho da Partícula , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Eletricidade Estática , Tensoativos/química
13.
Biomed Microdevices ; 16(1): 11-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23887615

RESUMO

In this work, antitumor compounds, lactoferrin [recombinant iron-free (Apo-rLf)], cisplatin (Cis) or their combination were embedded within a biodegradable polycaprolactone (PCL) polymer thin film, by a modified approach of a laser-based technique, matrix-assisted pulsed laser evaporation (MAPLE). The structural and morphological properties of the deposited hybrid films were analyzed by Fourier-transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). The in vitro effect on the cells' morphology and proliferation of murine melanoma B16-F10 cells was investigated and correlated with the films' surface chemistry and topography. Biological assays revealed decreased viability and proliferation, lower adherence, and morphological modifications in the case of melanoma cells cultured on both Apo-rLf and Cis thin films. The antitumor effect was enhanced by deposition of Apo-rLf with Cis within the same film. The unique capability of the new approach, based on MAPLE, to embed antitumor active factors within a biodegradable matrix for obtaining novel biodegradable hybrid platform with increased antitumor efficiency has been demonstrated.


Assuntos
Anticarcinógenos/química , Materiais Revestidos Biocompatíveis/química , Poliésteres/química , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/química , Lactoferrina/química , Lasers , Camundongos , Microscopia de Força Atômica , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
14.
J Med Virol ; 85(5): 780-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23508903

RESUMO

Lactoferrin (Lf) was shown to exhibit its antiviral activity at an early phase of viral infection and a mechanism whereby the protein interacts with host cell surface molecules has been suggested. In this study, human Lf (HLf) and seven HLf-derived synthetic peptides (HLP) corresponding to the N-terminal domain of the native protein (1-47 amino acids sequence) were assayed for their capacity to prevent hepatitis B virus (HBV) infection and replication using the HepaRG and HepG2.2.2.15 cell lines. Of the series tested, four peptides showed 40-75% inhibition of HBV infection in HepaRG cells, HLP1-23 , containing the GRRRR cationic cluster, being the most potent. Interestingly, this cluster is one of the two glycosaminoglycan binding sites of the native HLf involved in its antiviral activity; however, the mechanism of the HLP1-23 action was different from that of the full-length protein, the peptide inhibiting HBV infection when pre-incubated with the virus, while no effect was observed on the target cells. It is suggested that the cationic cluster is sufficient for the peptide to interact stably with negatively charged residues on the virion envelope, while the absence of the second glycosaminoglycan binding site prevents its efficient attachment to the cells. In conclusion, this peptide may constitute a non-toxic approach for potential clinical applications in inhibiting HBV entry by neutralizing the viral particles.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Linhagem Celular , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Humanos , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
Biochem Cell Biol ; 90(3): 449-55, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22380846

RESUMO

Different cell types have been reported to internalize lactoferrin (Lf) by specific or nonspecific receptors. Our studies focused on the endocytic pathway of human Lf in macrophage-like THP-1 cells. Lactoferrin was found to be internalized by THP-1 cells differentiated with phorbol myristate acetate. Incubation of cells with chlorpromazine and dansylcadaverine, inhibitors of clathrin-dependent endocytosis, led to a 50% inhibition of Lf internalization compared with untreated cells. Bafilomycin A1 and NH(4)Cl treatment also resulted in 40%-60% inhibition, respectively, suggesting that the internalization of Lf may partly be mediated by acidic endosome-like organelles. Endocytic uptake of Lf was also cholesterol-dependent, as shown by methyl-ß-cyclodextrin or nystatin treatment of the cells prior to internalization. Partial colocalization of Lf and EEA-1, a marker specific for early endosomes, could be observed. Colocalization of Lf with a specific endoplasmic reticulum marker was also detected. Our results suggest that Lf is internalized mainly by the clathrin-dependent pathway in THP-1 cells and targets the ER. The physiological consequences of this intracellular trafficking will be the subject of future investigations.


Assuntos
Endocitose , Lactoferrina/metabolismo , Macrófagos/metabolismo , Cloreto de Amônio/farmacologia , Cadaverina/análogos & derivados , Cadaverina/farmacologia , Linhagem Celular , Clorpromazina/farmacologia , Colesterol/fisiologia , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Humanos , Macrolídeos/farmacologia , Macrófagos/efeitos dos fármacos , Microscopia de Fluorescência , Transporte Proteico/efeitos dos fármacos
16.
Biometals ; 23(3): 485-92, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20191307

RESUMO

A number of studies have reported the anti-tumoral activity of lactoferrin, a property mediated by a variety of mechanisms such as inhibitory effects on tumor cell growth, NK cell activation, and enhancement of apoptosis. Liposomes are known to be an efficient drug delivery system which can enhance the therapeutic potential of the encapsulated compounds. We have used positively charged liposomes composed of phosphatidylcholine (PC), dioleoylphosphatidylethanolamine (DOPE), cholesterol (Chol) and stearylamine (SA) (6:1:2:1 M ratio) as a carrier system for bovine iron-free Lf (ApoBLf), and compared the in vitro effect of free and liposome-entrapped ApoBLf on the growth and morphology of murine melanoma B16-F10 cells. Liposomal formulation of ApoBLf was found to enhance the capacity of the protein to inhibit the cell proliferation by affecting cell cycle progression. The effect appeared to be due to the capacity of liposomes to increase the uptake of the protein and its accumulation into cells and probably to protect it from degradation, as revealed by fluorescence microscopy and flow cytometry. Our results demonstrate the ability of liposomes to improve the anti-tumor activity of Lf and suggest that liposomal protein may have a potential therapeutic use in the prevention and/or treatment of cancer diseases.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Lactoferrina/administração & dosagem , Lactoferrina/farmacologia , Melanoma/tratamento farmacológico , Melanoma/patologia , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Lipossomos , Camundongos , Relação Estrutura-Atividade
17.
Roum Arch Microbiol Immunol ; 69(2): 85-9, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21235135

RESUMO

The oral cavity contains the greatest biodiversity, over 70 species being isolated from mouth mucosa, saliva, denture surfaces and/or dental-plaque. The oral streptococci, representing over 80% of the mouth micro flora, are able to synthesize glucosyl-transferases, enzymes involved in glucans production. Glucans are involved in production of an extracellular slime layer promoting adhesion and formation of a dental plaque biofilm. The 43 isolates studied obtained from partially and/or totally edentulous, were identified by VITEK system using gram-positive identification cards. Species-specific regions within the genes coding for glucosyl-transferases (gtf genes) were targeted for PCR identification of isolates. Sequencing of 16S rRNA was used as gold standard for strain confirmation. VITEK system identified a number of 11 strains as S. mitis/oralis, 12 strains as S. anginosus/gordonii, 12 strains as S. sanguinis/parasanguinis, 3 strains as S. salivarius, 3 strains as S. plurianimalium, 1 strain as S. cristatus and 1 strain as S. alactolyticus, respectively. The PCR system targeting gtf genes was able to identify S. oralis, S. salivarius and S. gordonii strains. Sequence of 16S rRNA discriminated among streptococci species and revealed 16 strains of Leuconostoc mesenteroides. Many studies are needed in order to select the most reliable phenotypic and genotypic methods in order to improve the identification algorithm for oral streptococci used by clinical laboratories. Their accurate identification is mandatory for better understanding their role in human infections.


Assuntos
Boca/microbiologia , Streptococcus/isolamento & purificação , Humanos , Fenótipo , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Streptococcus/genética
18.
J Liposome Res ; 17(3-4): 237-48, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18027244

RESUMO

This study focuses on the possible therapeutic utility of liposomes in the local treatment of inflammatory disorders, specifically rheumatoid arthritis (RA). Our purpose was to design a depot delivery system of an anti-inflammatory glycoprotein, lactoferrin (Lf), using positive multivesicular liposomes and to investigate its in vivo efficiency. Lactoferrin (Lf) has previously been shown to have therapeutic potential in mice with collagen-induced arthritis (CIA) after intra-articular (i.a.) injection. In order to protect Lf from enzymatic degradation and to maintain an adequate concentration in the joint, liposomes have been used as carriers for controlled drug delivery. Based on our previous findings we compared the ability of free Lf and Lf encapsulated in liposomes to suppress established joint inflammation and to modulate the cytokine response of lymph node (LN) T lymphocytes in DBA/1 mice with CIA. The anti-inflammatory effect of Lf formulated in positive liposomes was more pronounced compared with the free protein. After a single i.a. injection of liposomal Lf the arthritic score significantly decreased continuously for 2 weeks while in the case of free Lf for only 3-4 days. The cytokine levels produced by LN T cells showed decreased pro-inflammatory cytokines (TNF-alpha and IFN-gamma) accompanied by increased anti-inflammatory cytokines (IL-5 and especcialy IL-10) in encapsulated compared with free Lf. When compared with free Lf, liposomal Lf decreased the expression of costimulatory molecules on DCs, reduced pro-inflammatory (TNF) and increased anti-inflammatory (IL-10) cytokine production. Using CIA model we have studied the liposome trafficking following i.a. administration and we have identified DCs as a target for liposomes in the draining LN. Our results suggest that the entrapment of Lf in liposomes may modify its pharmacodynamic profile and could have great potential as controlled delivery system in the treatment of RA and other local inflammatory conditions.


Assuntos
Lipídeos/administração & dosagem , Nanoestruturas , Animais , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Citometria de Fluxo , Interferon gama/biossíntese , Lipossomos , Camundongos , Camundongos Endogâmicos DBA , Microscopia de Fluorescência , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA