Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
2.
J Comp Physiol B ; 191(4): 657-668, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33788018

RESUMO

Phenotypic plasticity is predicted to permit persistence in new environments, and may subsequently evolve to enhance fitness. Colonizing environments with lower winter temperatures can lead to the evolution of lower critical thermal minima; the corresponding physiological traits associated with temperature tolerance are predicted to involve mitochondrial function. Threespine stickleback (Gasterosteus aculeatus) have colonized freshwater lakes along the Pacific Northwest. These freshwater populations are known to exhibit cold-induced increases in mitochondrial volume density in pectoral muscle, but whether such plasticity evolved before or after colonization is uncertain. Here, we measure critical thermal minima (CTmin) in one marine and one freshwater population of threespine stickleback, and mitochondrial volume density in pectoral and cardiac tissue of both populations acclimated to different temperature treatments (6.2, 14.5 and 20.6 â„ƒ). Mitochondrial volume density increased with cold acclimation in pectoral muscle; cardiac muscle was non-plastic but had elevated mitochondrial volume densities compared to pectoral muscle across all temperature treatments. There were no differences in the levels of plasticity between marine and freshwater stickleback, but neither were there differences in CTmin. Importantly, marine stickleback exhibited plasticity under low-salinity conditions, suggesting that marine stickleback had at least one necessary phenotype for persistence in freshwater environments before colonization occurred.


Assuntos
Smegmamorpha , Aclimatação , Adaptação Fisiológica , Animais , Lagos , Tamanho Mitocondrial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA