Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 9: 1, 2014 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-24386896

RESUMO

BACKGROUND: BACE1 is one of the two enzymes that cleave amyloid precursor protein to generate Alzheimer's disease (AD) beta amyloid peptides. It is widely believed that BACE1 initiates APP processing in endosomes, and in the brain this cleavage is known to occur during axonal transport of APP. In addition, BACE1 accumulates in dystrophic neurites surrounding brain senile plaques in individuals with AD, suggesting that abnormal accumulation of BACE1 at presynaptic terminals contributes to pathogenesis in AD. However, only limited information is available on BACE1 axonal transport and targeting. RESULTS: By visualizing BACE1-YFP dynamics using live imaging, we demonstrate that BACE1 undergoes bi-directional transport in dynamic tubulo-vesicular carriers along axons in cultured hippocampal neurons and in acute hippocampal slices of transgenic mice. In addition, a subset of BACE1 is present in larger stationary structures, which are active presynaptic sites. In cultured neurons, BACE1-YFP is preferentially targeted to axons over time, consistent with predominant in vivo localization of BACE1 in presynaptic terminals. Confocal analysis and dual-color live imaging revealed a localization and dynamic transport of BACE1 along dendrites and axons in Rab11-positive recycling endosomes. Impairment of Rab11 function leads to a diminution of total and endocytosed BACE1 in axons, concomitant with an increase in the soma. Together, these results suggest that BACE1 is sorted to axons in endosomes in a Rab11-dependent manner. CONCLUSION: Our results reveal novel information on dynamic BACE1 transport in neurons, and demonstrate that Rab11-GTPase function is critical for axonal sorting of BACE1. Thus, we suggest that BACE1 transcytosis in endosomes contributes to presynaptic BACE1 localization.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal/fisiologia , Axônios/metabolismo , Hipocampo/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Endossomos/metabolismo , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Neurônios/metabolismo , Técnicas de Cultura de Órgãos
2.
Cell Rep ; 5(6): 1552-63, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24373286

RESUMO

Abnormal accumulation of ß-secretase (BACE1) in dystrophic neurites and presynaptic ß-amyloid (Aß) production contribute to Alzheimer's disease pathogenesis. Little, however, is known about BACE1 sorting and dynamic transport in neurons. We investigated BACE1 trafficking in hippocampal neurons using live-cell imaging and selective labeling. We report that transport vesicles containing internalized BACE1 in dendrites undergo exclusive retrograde transport toward the soma, whereas they undergo bidirectional transport in axons. Unidirectional dendritic transport requires Eps15-homology-domain-containing (EHD) 1 and 3 protein function. Furthermore, loss of EHD function compromises dynamic axonal transport and overall BACE1 levels in axons. EHD1/3 colocalize with BACE1 and APP ß-C-terminal fragments in hippocampal mossy fiber terminals, and their depletion in neurons significantly attenuates Aß levels. These results demonstrate unidirectional endocytic transport of a dendritic cargo and reveal a role for EHD proteins in neuronal BACE1 transcytosis and Aß production, processes that are highly relevant for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal , Proteínas de Transporte/metabolismo , Dendritos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Transporte Proteico , Proteínas de Transporte Vesicular/genética
3.
Mol Neurodegener ; 6: 87, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22204304

RESUMO

BACKGROUND: p23 belongs to the highly conserved p24 family of type I transmembrane proteins, which participate in the bidirectional protein transport between the endoplasmic reticulum and Golgi apparatus. Mammalian p23 has been shown to interact with γ-secretase complex, and modulate secretory trafficking as well as intramembranous processing of amyloid precursor protein in cultured cells. Negative modulation of ß-amyloid production by p23 in cultured cell lines suggested that elevation of p23 expression in neurons might mitigate cerebral amyloid burden. RESULTS: We generated several lines of transgenic mice expressing human p23 in neurons under the control of Thy-1.2 promoter. We found that even a 50% increase in p23 levels in the central nervous system of mice causes post-natal growth retardation, severe neurological problems characterized by tremors, seizure, ataxia, and uncoordinated movements, and premature death. The severity of the phenotype closely correlated with the level of p23 overexpression in multiple transgenic lines. While the number and general morphology of neurons in Hup23 mice appeared to be normal throughout the brain, abnormal non-Golgi p23 localization was observed in a subset of neurons with high transgene expression in brainstem. Moreover, detailed immunofluorescence analysis revealed marked proliferation of astrocytes, activation of microglia, and thinning of myelinated bundles in brainstem of Hup23 mice. CONCLUSIONS: These results demonstrate that proper level of p23 expression is critical for neuronal function, and perturbing p23 function by overexpression initiates a cascade of cellular reactions in brainstem that leads to severe motor deficits and other neurological problems, which culminate in premature death. The neurological phenotype observed in Hup23 mice highlights significant adverse effects associated with manipulating neuronal expression of p23, a previously described negative modulator of γ-secretase activity and ß-amyloid production. Moreover, our report has broader relevance to molecular mechanisms in several neurodegenerative diseases as it highlights the inherent vulnerability of the early secretory pathway mechanisms that ensure proteostasis in neurons.


Assuntos
Proteínas de Membrana/metabolismo , Atividade Motora/fisiologia , Transtornos dos Movimentos/fisiopatologia , Neurônios/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transtornos dos Movimentos/patologia , Proteína Básica da Mielina/metabolismo , Neurônios/citologia , Neurônios/patologia , Proteínas de Transporte Nucleocitoplasmático
4.
J Neurosci ; 30(48): 16160-9, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123562

RESUMO

Sequential cleavage of amyloid precursor protein by ß- and γ-secretases generates ß-amyloid peptides (Aß), which accumulate in the brains of patients with Alzheimer's disease. We recently identified S-palmitoylation of two γ-secretase subunits, APH1 and nicastrin. S-Palmitoylation is an essential posttranslational modification for the proper trafficking and function of many neuronal proteins. In cultured cell lines, lack of S-palmitoylation causes instability of nascent APH1 and nicastrin but does not affect γ-secretase processing of amyloid precursor protein. To determine the importance of γ-secretase S-palmitoylation for Aß deposition in the brain, we generated transgenic mice coexpressing human wild-type or S-palmitoylation-deficient APH1aL and nicastrin in neurons in the forebrain. We found that lack of S-palmitoylation did not impair the ability of APH1aL and nicastrin to form enzymatically active protein complexes with endogenous presenilin 1 and PEN2 or affect the localization of γ-secretase subunits in dendrites and axons of cortical neurons. When we crossed these mice with 85Dbo transgenic mice, which coexpress familial Alzheimer's disease-causing amyloid precursor protein and presenilin 1 variants, we found that coexpression of wild-type or mutant APH1aL and nicastrin led to marked stabilization of transgenic presenilin 1 in the brains of double-transgenic mice. Interestingly, we observed a moderate, but significant, reduction in amyloid deposits in the forebrain of mice expressing S-palmitoylation-deficient γ-secretase subunits compared with mice overexpressing wild-type subunits, as well as a reduction in the levels of insoluble Aß(40-42). These results indicate that γ-secretase S-palmitoylation modulates Aß deposition in the brain.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/deficiência , Peptídeos beta-Amiloides/metabolismo , Endopeptidases/deficiência , Lipoilação/fisiologia , Glicoproteínas de Membrana/deficiência , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Sequência de Aminoácidos , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/fisiologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/fisiologia , Animais , Endopeptidases/biossíntese , Endopeptidases/fisiologia , Lipoilação/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/fisiologia , Placa Amiloide/metabolismo , Placa Amiloide/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA