Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588481

RESUMO

Hemojuvelin (HJV) is a GPI-anchored protein of the repulsive guidance molecule (RGM) family acting as a bone morphogenetic protein (BMP) co-receptor to induce the hepatic iron regulatory protein hepcidin. Hepcidin causes ubiquitination and degradation of the sole known iron exporter ferroportin thereby limiting iron availability. The detailed signaling mechanism of HJV in vivo has yet to be investigated. In the current manuscript, we used an established model of adeno-associated virus (AAV) mediated liver-specific overexpression of HJV in murine models of hepatocyte-specific deficiency of the BMP type I receptors Alk2 or Alk3. In control mice, HJV overexpression increased hepatic Hamp mRNA levels, soluble HJV (sHJV), splenic iron content (SIC), as well as pSMAD1/5/8 levels. In contrast, in Alk2fl/fl;Alb-Cre and Alk3fl/fl;Alb-Cre mice, which present with moderate and severe iron overload, respectively, the administration of AAV-HJV induced HJV and sHJV. However, it did not rescue the iron overload phenotypes of those mice. Serum iron levels were induced in Alk2fl/fl;Alb-Cre mice following HJV overexpression. In PBS-injected Alk3fl/fl;Alb-Cre mice serum iron levels and the expression of duodenal ferroportin remained high, whereas Hamp mRNA levels were decreased to 1-5% of the levels detected in controls. This was reduced even further by AAV-HJV overexpression. SIC remained low in mice with hepatocyte-specific Alk2 or Alk3 deficiency, reflecting disturbed iron homeostasis with high serum iron levels and transferrin saturation and an inability to induce hepcidin by HJV overexpression. The data indicate that ALK2 and ALK3 are both required in vivo for the HJV-mediated induction of hepcidin.

2.
EJHaem ; 5(1): 93-104, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38406551

RESUMO

Flow cytometry-based immunophenotyping is a mainstay of diagnostics in acute myeloid leukaemia (AML). Aberrant CD56 and T-cell antigen expression is observed in a fraction subset of AML cases, but the clinical relevance remains incompletely understood. Here, we retrospectively investigated the association of CD56 and T-cell marker expression with disease-specific characteristics and outcome of 324 AML patients who received intensive induction therapy at our centre between 2011 and 2019. We found that CD2 expression was associated with abnormal non-complex karyotype, NPM1 wild-type status and TP53 mutation. CD2 also correlated with a lower complete remission (CR) rate (47.8% vs. 71.6%, p = 0.03). CyTdT and CD2 were associated with inferior 3-year event-free-survival (EFS) (5.3% vs. 33.5%, p = 0.003 and 17.4% vs. 33.1%, p = 0.02, respectively). CyTdT expression was also correlated with inferior relapse-free survival (27.3% vs. 48.8%, p = 0.04). In multivariable analyses CD2 positivity was an independent adverse factor for EFS (HR 1.72, p = 0.03). These results indicate a biological relevance of aberrant T-cell marker expression in AML and provide a rationale to further characterise the molecular origin in T-lineage-associated AML.

3.
Blood ; 142(25): 2175-2191, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-37756525

RESUMO

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Assuntos
Proteínas de Ligação a DNA , Leucemia Mieloide Aguda , Humanos , Camundongos , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Temozolomida , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Dano ao DNA , Reparo do DNA , Células Germinativas/metabolismo , DNA , Fatores de Transcrição/genética
4.
Blood ; 142(13): 1143-1155, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294920

RESUMO

Diffuse large B-cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, is characterized by an aggressive clinical course. In approximately one-third of patients with DLBCL, first-line multiagent immunochemotherapy fails to produce a durable response. Molecular heterogeneity and apoptosis resistance pose major therapeutic challenges in DLBCL treatment. To circumvent apoptosis resistance, the induction of ferroptosis might represent a promising strategy for lymphoma therapy. In this study, a compound library, targeting epigenetic modulators, was screened to identify ferroptosis-sensitizing drugs. Strikingly, bromodomain and extra-terminal domain (BET) inhibitors sensitized cells of the germinal center B-cell-like (GCB) subtype of DLBCL to ferroptosis induction and the combination of BET inhibitors with ferroptosis inducers, such as dimethyl fumarate or RSL3, synergized in the killing of DLBCL cells in vitro and in vivo. On the molecular level, the BET protein BRD4 was found to be an essential regulator of ferroptosis suppressor protein 1 expression and thus to protect GCB-DLBCL cells from ferroptosis. Collectively, we identified and characterized BRD4 as an important player in ferroptosis suppression in GCB-DLBCL and provide a rationale for the combination of BET inhibitors with ferroptosis-inducing agents as a novel therapeutic approach for DLBCL treatment.


Assuntos
Ferroptose , Linfoma Difuso de Grandes Células B , Humanos , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Linfócitos B/patologia , Proteínas de Ciclo Celular
5.
Front Cell Dev Biol ; 11: 866847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091981

RESUMO

GFI1 is a transcriptional repressor and plays a pivotal role in regulating the differentiation of hematopoietic stem cells (HSCs) towards myeloid and lymphoid cells. Serial transplantation of Gfi1 deficient HSCs repopulated whole hematopoietic system but in a competitive setting involving wild-type HSCs, they lose this ability. The underlying mechanisms to this end are poorly understood. To better understand this, we used different mouse strains that express either loss of both Gfi1 alleles (Gfi1-KO), with reduced expression of GFI1 (GFI1-KD) or wild-type Gfi1/GFI1 (Gfi1-/GFI1-WT; corresponding to the mouse and human alleles). We observed that loss of Gfi1 or reduced expression of GFI1 led to a two to four fold lower number of HSCs (defined as Lin-Sca1+c-Kit+CD150+CD48-) compared to GFI1-WT mice. To study the functional influence of different levels of GFI1 expression on HSCs function, HSCs from Gfi1-WT (expressing CD45.1 + surface antigens) and HSCs from GFI1-KD or -KO (expressing CD45.2 + surface antigens) mice were sorted and co-transplanted into lethally irradiated host mice. Every 4 weeks, CD45.1+ and CD45.2 + on different lineage mature cells were analyzed by flow cytometry. At least 16 weeks later, mice were sacrificed, and the percentage of HSCs and progenitors including GMPs, CMPs and MEPs in the total bone marrow cells was calculated as well as their CD45.1 and CD45.2 expression. In the case of co-transplantation of GFI1-KD with Gfi1-WT HSCs, the majority of HSCs (81% ± 6%) as well as the majority of mature cells (88% ± 10%) originated from CD45.2 + GFI1-KD HSCs. In the case of co-transplantation of Gfi1-KO HSCs with Gfi1-WT HSCs, the majority of HSCs originated from CD45.2+ and therefore from Gfi1-KO (61% ± 20%); however, only a small fraction of progenitors and mature cells originated from Gfi1-KO HSCs (<1%). We therefore in summary propose that GFI1 has a dose-dependent role in the self-renewal and differentiation of HSCs.

6.
Leukemia ; 36(9): 2196-2207, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35804097

RESUMO

Recent studies highlighted the role of transcription factors in metabolic regulation during hematopoiesis and leukemia development. GFI1B is a transcriptional repressor that plays a critical role in hematopoiesis, and its expression is negatively related to the prognosis of acute myeloid leukemia (AML) patients. We earlier reported a change in the metabolic state of hematopoietic stem cells upon Gfi1b deletion. Here we explored the role of Gfi1b in metabolism reprogramming during hematopoiesis and leukemogenesis. We demonstrated that Gfi1b deletion remarkably activated mitochondrial respiration and altered energy metabolism dependence toward oxidative phosphorylation (OXPHOS). Mitochondrial substrate dependency was shifted from glucose to fatty acids upon Gfi1b deletion via upregulating fatty acid oxidation (FAO). On a molecular level, Gfi1b epigenetically regulated multiple FAO-related genes. Moreover, we observed that metabolic phenotypes evolved as cells progressed from preleukemia to leukemia, and the correlation between Gfi1b expression level and metabolic phenotype was affected by genetic variations in AML cells. FAO or OXPHOS inhibition significantly impeded leukemia progression of Gfi1b-KO MLL/AF9 cells. Finally, we showed that Gfi1b-deficient AML cells were more sensitive to metformin as well as drugs implicated in OXPHOS and FAO inhibition, opening new potential therapeutic strategies.


Assuntos
Hematopoese , Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas , Proteínas Repressoras , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas , Humanos , Leucemia Mieloide Aguda/metabolismo , Síndromes Mielodisplásicas , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição
7.
J Crohns Colitis ; 16(12): 1893-1910, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-35793807

RESUMO

BACKGROUND AND AIMS: Colorectal cancer [CRC] is one of the most frequent malignancies, but the molecular mechanisms driving cancer growth are incompletely understood. We characterised the roles of the cytokine IL-9 and Th9 cells in regulating CRC development. METHODS: CRC patient samples and samples from AOM/DSS treated mice were analysed for expression of IL-9, CD3, and PU.1 by FACS analysis and immunohistochemistry. IL-9 citrine reporter mice, IL-9 knockout mice, and PU.1 and GATA3 CD4-Cre conditional knockout mice were studied in the AOM/DSS model. DNA minicircles or hyper-IL-6 were used for overexpression of cytokines in vivo. Effects of IL-6 and IL-9 were determined in organoid and T cell cultures. Claudin2/3 expression was studied by western blotting and bacterial translocation by FISH. RESULTS: We uncovered a significant expansion of IL-9- and PU.1-expressing mucosal Th9 cells in CRC patients, with particularly high levels in patients with colitis-associated neoplasias. PU.1+ Th9 cells accumulated in experimental colorectal neoplasias. Deficiency of IL-9 or inactivation of PU.1 in T cells led to impaired tumour growth in vivo, suggesting a protumoral role of Th9 cells. In contrast, GATA3 inactivation did not affect Th9-mediated tumour growth. Mechanistically, IL-9 controls claudin2/3 expression and T cell-derived IL-6 production in colorectal tumours. IL-6 abrogated the anti-proliferative effects of IL-9 in epithelial organoids in vivo. IL-9-producing Th9 cells expand in CRC and control IL-6 production by T cells. CONCLUSIONS: IL-9 is a crucial regulator of tumour growth in colitis-associated neoplasias and emerges as potential target for therapy.


Assuntos
Colite , Neoplasias Colorretais , Camundongos , Animais , Interleucina-9/metabolismo , Interleucina-6/metabolismo , Linfócitos T Auxiliares-Indutores/patologia , Colite/patologia , Células Epiteliais/metabolismo , Citocinas/metabolismo , Neoplasias Colorretais/patologia , Camundongos Knockout , Camundongos Endogâmicos C57BL
8.
Nucleic Acids Res ; 50(14): 7938-7958, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35871293

RESUMO

Although originally described as transcriptional activator, SPI1/PU.1, a major player in haematopoiesis whose alterations are associated with haematological malignancies, has the ability to repress transcription. Here, we investigated the mechanisms underlying gene repression in the erythroid lineage, in which SPI1 exerts an oncogenic function by blocking differentiation. We show that SPI1 represses genes by binding active enhancers that are located in intergenic or gene body regions. HDAC1 acts as a cooperative mediator of SPI1-induced transcriptional repression by deacetylating SPI1-bound enhancers in a subset of genes, including those involved in erythroid differentiation. Enhancer deacetylation impacts on promoter acetylation, chromatin accessibility and RNA pol II occupancy. In addition to the activities of HDAC1, polycomb repressive complex 2 (PRC2) reinforces gene repression by depositing H3K27me3 at promoter sequences when SPI1 is located at enhancer sequences. Moreover, our study identified a synergistic relationship between PRC2 and HDAC1 complexes in mediating the transcriptional repression activity of SPI1, ultimately inducing synergistic adverse effects on leukaemic cell survival. Our results highlight the importance of the mechanism underlying transcriptional repression in leukemic cells, involving complex functional connections between SPI1 and the epigenetic regulators PRC2 and HDAC1.


Assuntos
Histona Desacetilase 1 , Leucemia Eritroblástica Aguda , Complexo Repressor Polycomb 2 , Proteínas Proto-Oncogênicas , Transativadores , Acetilação , Animais , Cromatina/genética , Histona Desacetilase 1/genética , Leucemia Eritroblástica Aguda/genética , Camundongos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/genética , Transativadores/genética
9.
J Immunol ; 208(2): 358-370, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34903641

RESUMO

Dendritic cells (DCs) are heterogeneous immune regulators involved in autoimmune diseases. Epigenomic mechanisms orchestrating DC development and DC subset diversification remain insufficiently understood but could be important to modulate DC fate for clinical purposes. By combining whole-genome methylation assessment with the analysis of mice expressing reduced DNA methyltransferase 1 levels, we show that distinct DNA methylation levels and patterns are required for the development of plasmacytoid DC and conventional DC subsets. We provide clonal in vivo evidence for DC lineage establishment at the stem cell level, and we show that a high DNA methylation threshold level is essential for Flt3-dependent survival of DC precursors. Importantly, reducing methylation predominantly depletes plasmacytoid DC and alleviates systemic lupus erythematosus in an autoimmunity mouse model. This study shows how DNA methylation regulates the production of DC subsets and provides a potential rationale for targeting autoimmune disease using hypomethylating agents.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/genética , Células Dendríticas/imunologia , Homeostase/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Animais , Autoimunidade/genética , Células da Medula Óssea/imunologia , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Knockout
10.
Br J Haematol ; 196(4): 995-1006, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34792186

RESUMO

Acute myeloid leukaemia (AML) is a haematological malignancy characterized by a poor prognosis. Bone marrow mesenchymal stromal cells (BM MSCs) support leukaemic cells in preventing chemotherapy-induced apoptosis. This encouraged us to investigate leukaemia-BM niche-associated signalling and to identify signalling cascades supporting the interaction of leukaemic cells and BM MSC. Our study demonstrated functional differences between MSCs originating from leukaemic (AML MSCs) and healthy donors (HD MSCs). The direct interaction of leukaemic and AML MSCs was indispensable in influencing AML cell proliferation. We further identified an important role for Notch expression and its activation in AML MSCs contributing to the enhanced proliferation of AML cells. Supporting this observation, overexpression of the intracellular Notch domain (Notch ICN) in AML MSCs enhanced AML cells' proliferation. From a therapeutic point of view, dexamethasone treatment impeded Notch signalling in AML MSCs resulting in reduced AML cell proliferation. Concurrent with our data, Notch inhibitors had only a marginal effect on leukaemic cells alone but strongly influenced Notch signalling in AML MSCs and abrogated their cytoprotective function on AML cells. In vivo, dexamethasone treatment impeded Notch signalling in AML MSCs leading to a reduced number of AML MSCs and improved survival of leukaemic mice. In summary, targeting the interaction of leukaemic cells and AML MSCs using dexamethasone or Notch inhibitors might further improve treatment outcomes in AML patients.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Receptores Notch/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Dexametasona/farmacologia , Humanos , Masculino , Camundongos
11.
Nat Commun ; 12(1): 4791, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373452

RESUMO

Classical dendritic cells (cDC) are professional antigen-presenting cells (APC) that regulate immunity and tolerance. Neutrophil-derived cells with properties of DCs (nAPC) are observed in human diseases and after culture of neutrophils with cytokines. Here we show that FcγR-mediated endocytosis of antibody-antigen complexes or an anti-FcγRIIIB-antigen conjugate converts neutrophils into nAPCs that, in contrast to those generated with cytokines alone, activate T cells to levels observed with cDCs and elicit CD8+ T cell-dependent anti-tumor immunity in mice. Single cell transcript analyses and validation studies implicate the transcription factor PU.1 in neutrophil to nAPC conversion. In humans, blood nAPC frequency in lupus patients correlates with disease. Moreover, anti-FcγRIIIB-antigen conjugate treatment induces nAPCs that can activate autologous T cells when using neutrophils from individuals with myeloid neoplasms that harbor neoantigens or those vaccinated against bacterial toxins. Thus, anti-FcγRIIIB-antigen conjugate-induced conversion of neutrophils to immunogenic nAPCs may represent a possible immunotherapy for cancer and infectious diseases.


Assuntos
Antígenos de Neoplasias/imunologia , Neoplasias/imunologia , Neutrófilos/imunologia , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Apresentação de Antígeno/imunologia , Complexo Antígeno-Anticorpo , Medula Óssea , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Movimento Celular , Proliferação de Células , Citocinas/imunologia , Células Dendríticas/imunologia , Endocitose , Humanos , Imunidade Inata , Imunoterapia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Espécies Reativas de Oxigênio , Transcriptoma
12.
J Allergy Clin Immunol ; 146(5): 1137-1151, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32199911

RESUMO

BACKGROUND: Scavenger receptor CD163 is exclusively expressed on monocytes/macrophages and is widely used as a marker for alternatively activated macrophages. However, the role of CD163 is not yet clear. OBJECTIVES: We sought to examine the function of CD163 in steady-state as well as in sterile and infectious inflammation. METHODS: Expression of CD163 was analyzed under normal and inflammatory conditions in mice. Functional relevance of CD163 was investigated in models of inflammation in wild-type and CD163-/- mice. RESULTS: We describe a subpopulation of bone marrow-resident macrophages (BMRMs) characterized by a high expression of CD163 and functionally distinct from classical bone marrow-derived macrophages. Development of CD163+ BMRMs is strictly dependent on IFN regulatory factor-8. CD163+ BMRMs show a specific transcriptome and cytokine secretion pattern demonstrating a specific immunomodulatory profile of these cells. Accordingly, CD163-/- mice show a stronger inflammation in allergic contact dermatitis, indicating a regulatory role of CD163. However, CD163-/- mice are highly susceptible to S aureus infections, demonstrating the relevance of CD163 for antimicrobial defense as well. CONCLUSIONS: Our data indicate that anti-inflammatory and immunosuppressive mechanisms are not necessarily associated with a decreased antimicrobial activity. In contrast, our data define a novel macrophage population that controls overwhelming inflammation on one hand but is also necessary for an effective control of infections on the other hand.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Células da Medula Óssea/metabolismo , Dermatite Alérgica de Contato/imunologia , Inflamação/imunologia , Macrófagos/metabolismo , Receptores de Superfície Celular/metabolismo , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Animais , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/genética , Células da Medula Óssea/imunologia , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunomodulação , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Ativação de Macrófagos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Superfície Celular/genética , Transcriptoma
13.
Bioinformatics ; 35(23): 4938-4945, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31134276

RESUMO

MOTIVATION: With its capacity for high-resolution data output in one region of interest, chromosome conformation capture combined with high-throughput sequencing (4C-seq) is a state-of-the-art next-generation sequencing technique that provides epigenetic insights, and regularly advances current medical research. However, 4C-seq data are complex and prone to biases, and while specialized programs exist, an unbiased, extensive benchmarking is still lacking. Furthermore, neither substantial datasets with fully characterized ground truth, nor simulation programs for realistic 4C-seq data have been published. RESULTS: We conducted a benchmarking study on 66 4C-seq samples from 20 datasets, and developed a novel 4C-seq simulation software, Basic4CSim, to allow for detailed comparisons of 4C-seq algorithms on 50 simulated datasets with 10-120 samples each. Simulations and benchmarking were adapted to address different characteristics of 4C-seq data. Simulated data were compared with published samples to validate simulation settings. We identified differences between 4C-seq algorithms in terms of precision, recall, interaction structure, and run time, and observed general trends. Novel differential pipeline versions of single-sample based 4C-seq algorithms were included in the benchmarking. While no single tool was optimally suited for both near-cis and far-cis, and both single-sample and differential analyses, choosing a high-performing algorithm variant did improve results considerably. For near-cis scenarios, r3Cseq, peakC and FourCSeq offered high precision, while fourSig demonstrated high overall F1 scores in far-cis analyses. Finally, 4C-seq simulations may aid in the development of improved analysis algorithms. AVAILABILITY AND IMPLEMENTATION: Basic4CSim is available at https://github.com/walter-ca/Basic4CSim. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Benchmarking , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Cromossomos , Software
14.
Nat Immunol ; 20(5): 546-558, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911105

RESUMO

Neutrophils are essential first-line defense cells against invading pathogens, yet when inappropriately activated, their strong immune response can cause collateral tissue damage and contributes to immunological diseases. However, whether neutrophils can intrinsically titrate their immune response remains unknown. Here we conditionally deleted the Spi1 gene, which encodes the myeloid transcription factor PU.1, from neutrophils of mice undergoing fungal infection and then performed comprehensive epigenomic profiling. We found that as well as providing the transcriptional prerequisite for eradicating pathogens, the predominant function of PU.1 was to restrain the neutrophil defense by broadly inhibiting the accessibility of enhancers via the recruitment of histone deacetylase 1. Such epigenetic modifications impeded the immunostimulatory AP-1 transcription factor JUNB from entering chromatin and activating its targets. Thus, neutrophils rely on a PU.1-installed inhibitor program to safeguard their epigenome from undergoing uncontrolled activation, protecting the host against an exorbitant innate immune response.


Assuntos
Epigênese Genética/imunologia , Epigenômica/métodos , Neutrófilos/imunologia , Proteínas Proto-Oncogênicas/imunologia , Transativadores/imunologia , Animais , Candida albicans/imunologia , Candida albicans/fisiologia , Candidíase/genética , Candidíase/imunologia , Candidíase/microbiologia , Resistência à Doença/genética , Resistência à Doença/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas/genética , Análise de Sobrevida , Transativadores/deficiência , Transativadores/genética , Transcriptoma/genética , Transcriptoma/imunologia
15.
Blood ; 132(25): 2643-2655, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30315124

RESUMO

Epigenetic control of gene expression occurs within discrete spatial chromosomal units called topologically associating domains (TADs), but the exact spatial requirements of most genes are unknown; this is of particular interest for genes involved in cancer. We therefore applied high-resolution chromosomal conformation capture sequencing to map the three-dimensional (3D) organization of the human locus encoding the key myeloid transcription factor PU.1 in healthy monocytes and acute myeloid leukemia (AML) cells. We identified a dynamic ∼75-kb unit (SubTAD) as the genomic region in which spatial interactions between PU.1 gene regulatory elements occur during myeloid differentiation and are interrupted in AML. Within this SubTAD, proper initiation of the spatial chromosomal interactions requires PU.1 autoregulation and recruitment of the chromatin-adaptor protein LDB1 (LIM domain-binding protein 1). However, once these spatial interactions have occurred, LDB1 stabilizes them independently of PU.1 autoregulation. Thus, our data support that PU.1 autoregulates its expression in a "hit-and-run" manner by initiating stable chromosomal loops that result in a transcriptionally active chromatin architecture.


Assuntos
Epigênese Genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda , Proteínas de Neoplasias , Proteínas Proto-Oncogênicas , Transativadores , Transcrição Gênica , Cromatina/genética , Cromatina/metabolismo , Loci Gênicos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/genética , Transativadores/metabolismo
16.
Matrix Biol ; 67: 47-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29360499

RESUMO

Hematopoietic stem and progenitor cell (HSPC) functions are regulated by a specialized microenvironment in the bone marrow - the hematopoietic stem cell niche - of which the extracellular matrix (ECM) is an integral component. We describe here the localization of ECM molecules, in particular the laminin α4, α3 and α5 containing isoforms in the bone marrow. Laminin 421 (composed of laminin α4, ß2, γ1 chains) is identified as a major component of the bone marrow ECM, occurring abundantly surrounding venous sinuses and in a specialized reticular fiber network of the intersinusoidal spaces of murine bone marrow (BM) in close association with HSPC. Bone marrow from Lama4-/- mice is significantly less efficient in reconstituting the hematopoietic system of irradiated wildtype (WT) recipients in competitive bone marrow transplantation assays and shows reduced colony formation in vitro. This is partially due to retention of Lin-c-kit+Sca-1+CD48- long-term and short-term hematopoietic stem cells (LT-HSC/ST-HSC) in the G0 phase of the cell cycle in Lama4-/- bone marrow and hence a more quiescent phenotype. In addition, the extravasation of WT BM cells into Lama4-/- bone marrow is impaired, influencing the recirculation of HSPC. Our data suggest that these effects are mediated by a compensatory expression of laminin α5 containing isoforms (laminin 521/522) in Lama4-/- bone marrow. Collectively, these intrinsic and extrinsic effects lead to reduced HSPC numbers in Lama4-/- bone marrow and reduced hematopoietic potential.


Assuntos
Medula Óssea/metabolismo , Células-Tronco Hematopoéticas/citologia , Laminina/metabolismo , Animais , Ciclo Celular , Movimento Celular , Matriz Extracelular/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Laminina/genética , Camundongos , Nicho de Células-Tronco
17.
Mol Cell Oncol ; 4(2): e1268241, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28401180

RESUMO

Although acute myeloid leukaemia (AML) is assumed to be driven by transformed haematopoietic stem and progenitor cells, we have described recently a new pathway leading to AML from T-cell progenitors. Furthermore, we could identify a subgroup of human AML with gene expression profile suggesting T-lymphoid origin and potentially novel treatment.

18.
Blood ; 129(1): 71-81, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27733358

RESUMO

Classical Hodgkin lymphoma (cHL), although originating from B cells, is characterized by the virtual lack of gene products whose expression constitutes the B-cell phenotype. Epigenetic repression of B-cell-specific genes via promoter hypermethylation and histone deacetylation as well as compromised expression of B-cell-committed transcription factors were previously reported to contribute to the lost B-cell phenotype in cHL. Restoring the B-cell phenotype may not only correct a central malignant property, but it may also render cHL susceptible to clinically established antibody therapies targeting B-cell surface receptors or small compounds interfering with B-cell receptor signaling. We conducted a high-throughput pharmacological screening based on >28 000 compounds in cHL cell lines carrying a CD19 reporter to identify drugs that promote reexpression of the B-cell phenotype. Three chemicals were retrieved that robustly enhanced CD19 transcription. Subsequent chromatin immunoprecipitation-based analyses indicated that action of 2 of these compounds was associated with lowered levels of the transcriptionally repressive lysine 9-trimethylated histone H3 mark at the CD19 promoter. Moreover, the antileukemia agents all-trans retinoic acid and arsenic trioxide (ATO) were found to reconstitute the silenced B-cell transcriptional program and reduce viability of cHL cell lines. When applied in combination with a screening-identified chemical, ATO evoked reexpression of the CD20 antigen, which could be further therapeutically exploited by enabling CD20 antibody-mediated apoptosis of cHL cells. Furthermore, restoration of the B-cell phenotype also rendered cHL cells susceptible to the B-cell non-Hodgkin lymphoma-tailored small-compound inhibitors ibrutinib and idelalisib. In essence, we report here a conceptually novel, redifferentiation-based treatment strategy for cHL.


Assuntos
Antineoplásicos/farmacologia , Linfócitos B/imunologia , Diferenciação Celular/efeitos dos fármacos , Doença de Hodgkin/imunologia , Transcriptoma/efeitos dos fármacos , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Linfócitos B/efeitos dos fármacos , Imunoprecipitação da Cromatina , Citometria de Fluxo , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Reação em Cadeia da Polimerase , Células Tumorais Cultivadas
19.
EMBO J ; 35(22): 2399-2416, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572462

RESUMO

Unfavorable patient survival coincides with lineage plasticity observed in human acute leukemias. These cases are assumed to arise from hematopoietic stem cells, which have stable multipotent differentiation potential. However, here we report that plasticity in leukemia can result from instable lineage identity states inherited from differentiating progenitor cells. Using mice with enhanced c-Myc expression, we show, at the single-cell level, that T-lymphoid progenitors retain broad malignant lineage potential with a high capacity to differentiate into myeloid leukemia. These T-cell-derived myeloid blasts retain expression of a defined set of T-cell transcription factors, creating a lymphoid epigenetic memory that confers growth and propagates myeloid/T-lymphoid plasticity. Based on these characteristics, we identified a correlating human leukemia cohort and revealed targeting of Jak2/Stat3 signaling as a therapeutic possibility. Collectively, our study suggests the thymus as a source for myeloid leukemia and proposes leukemic plasticity as a driving mechanism. Moreover, our results reveal a pathway-directed therapy option against thymus-derived myeloid leukemogenesis and propose a model in which dynamic progenitor differentiation states shape unique neoplastic identities and therapy responses.


Assuntos
Transdiferenciação Celular , Leucemia Mieloide/patologia , Células Progenitoras Linfoides/fisiologia , Linfócitos T/fisiologia , Animais , Humanos , Camundongos
20.
EMBO J ; 35(16): 1730-44, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27412700

RESUMO

Recent studies have shown that tissue macrophages (MΦ) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize tissues before birth. Further studies have proposed that developmentally distinct tissue MΦ can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we took advantage of an inducible fate-mapping system that facilitated the identification of CD45(+)c-kit(-)CX3CR1(+)F4/80(+) (A2) progenitors of the YS as the source of F4/80(hi) but not CD11b(hi) MΦ. Large-scale transcriptional profiling of MΦ precursors from the YS stage to adulthood allowed for building computational models for F4/80(hi) tissue macrophages being direct descendants of A2 progenitors. We further identified a distinct molecular signature of F4/80(hi) and CD11b(hi) MΦ and found that Irf8 was vital for MΦ maturation. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MΦ.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Macrófagos/fisiologia , Células-Tronco/fisiologia , Saco Vitelino/citologia , Animais , Simulação por Computador , Feminino , Imunofenotipagem , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...