Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 289(47): 32392-409, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25261468

RESUMO

SNARE proteins play indispensable roles in membrane fusion events in many cellular processes, including synaptic transmission and protein trafficking. Here, we characterize the Golgi SNARE protein, Gos28, and its role in rhodopsin (Rh1) transport through Drosophila photoreceptors. Mutations in gos28 lead to defective Rh1 trafficking and retinal degeneration. We have pinpointed a role for Gos28 in the intra-Golgi transport of Rh1, downstream from α-mannosidase-II in the medial- Golgi. We have confirmed the necessity of key residues in Gos28's SNARE motif and demonstrate that its transmembrane domain is not required for vesicle fusion, consistent with Gos28 functioning as a t-SNARE for Rh1 transport. Finally, we show that human Gos28 rescues both the Rh1 trafficking defects and retinal degeneration in Drosophila gos28 mutants, demonstrating the functional conservation of these proteins. Our results identify Gos28 as an essential SNARE protein in Drosophila photoreceptors and provide mechanistic insights into the role of SNAREs in neurodegenerative disease.


Assuntos
Proteínas de Drosophila/metabolismo , Complexo de Golgi/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Proteínas Qb-SNARE/metabolismo , Rodopsina/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Western Blotting , Sobrevivência Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Humanos , Microscopia Confocal , Microscopia Eletrônica , Dados de Sequência Molecular , Mutação , Proteínas Qb-SNARE/genética , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Homologia de Sequência de Aminoácidos
2.
PLoS Genet ; 10(5): e1004349, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24785692

RESUMO

As newly synthesized glycoproteins move through the secretory pathway, the asparagine-linked glycan (N-glycan) undergoes extensive modifications involving the sequential removal and addition of sugar residues. These modifications are critical for the proper assembly, quality control and transport of glycoproteins during biosynthesis. The importance of N-glycosylation is illustrated by a growing list of diseases that result from defects in the biosynthesis and processing of N-linked glycans. The major rhodopsin in Drosophila melanogaster photoreceptors, Rh1, is highly unique among glycoproteins, as the N-glycan appears to be completely removed during Rh1 biosynthesis and maturation. However, much of the deglycosylation pathway for Rh1 remains unknown. To elucidate the key steps in Rh1 deglycosylation in vivo, we characterized mutant alleles of four Drosophila glycosyl hydrolases, namely α-mannosidase-II (α-Man-II), α-mannosidase-IIb (α-Man-IIb), a ß-N-acetylglucosaminidase called fused lobes (Fdl), and hexosaminidase 1 (Hexo1). We have demonstrated that these four enzymes play essential and unique roles in a highly coordinated pathway for oligosaccharide trimming during Rh1 biosynthesis. Our results reveal that α-Man-II and α-Man-IIb are not isozymes like their mammalian counterparts, but rather function at distinct stages in Rh1 maturation. Also of significance, our results indicate that Hexo1 has a biosynthetic role in N-glycan processing during Rh1 maturation. This is unexpected given that in humans, the hexosaminidases are typically lysosomal enzymes involved in N-glycan catabolism with no known roles in protein biosynthesis. Here, we present a genetic dissection of glycoprotein processing in Drosophila and unveil key steps in N-glycan trimming during Rh1 biosynthesis. Taken together, our results provide fundamental advances towards understanding the complex and highly regulated pathway of N-glycosylation in vivo and reveal novel insights into the functions of glycosyl hydrolases in the secretory pathway.


Assuntos
Drosophila melanogaster/metabolismo , Hidrolases/genética , Mutação , Polissacarídeos/metabolismo , Rodopsina/biossíntese , Animais , Western Blotting , Drosophila melanogaster/genética , Glicosilação
3.
Vis Neurosci ; 29(3): 143-56, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22575127

RESUMO

Glycosylphosphatidylinositol (GPI) anchors are critical for the membrane attachment of a wide variety of essential signaling and cell adhesion proteins. The GPI anchor is a complex glycolipid structure that utilizes glycosylphosphatidylinositol-mannosyltransferases (GPI-MTs) for the addition of three core mannose residues during its biosynthesis. Here, we demonstrate that Drosophila GPI-MT2 is required for the GPI-mediated membrane attachment of several GPI-anchored proteins, including the photoreceptor-specific cell adhesion molecule, chaoptin. Mutations in gpi-mt2 lead to defects in chaoptin trafficking to the plasma membrane in Drosophila photoreceptor cells. In gpi-mt2 mutants, loss of sufficient chaoptin in the membrane leads to microvillar instability, photoreceptor cell pathology, and retinal degeneration. Finally, using site-directed mutagenesis, we have identified key amino acids that are essential for GPI-MT2 function and cell viability in Drosophila. Our findings on GPI-MT2 provide a mechanistic link between GPI anchor biosynthesis and protein trafficking in Drosophila and shed light on a novel mechanism for inherited retinal degeneration.


Assuntos
Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Glicosilfosfatidilinositóis/metabolismo , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/biossíntese , Receptores de Superfície Celular/biossíntese , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Western Blotting , Membrana Celular/metabolismo , Sobrevivência Celular/fisiologia , DNA/genética , Proteínas de Drosophila/genética , Glicosilfosfatidilinositóis/genética , Humanos , Imuno-Histoquímica , Manosiltransferases/genética , Microscopia Eletrônica , Microvilosidades/metabolismo , Dados de Sequência Molecular , Mutagênese , Opsinas/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Conformação Proteica , Especificidade da Espécie
4.
Neuron ; 72(4): 602-15, 2011 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-22099462

RESUMO

TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.


Assuntos
Proteínas de Drosophila/metabolismo , Rodopsina/metabolismo , Canais de Cátion TRPC/metabolismo , Animais , Linhagem Celular , Drosophila , Chaperonas Moleculares/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Transporte Proteico/fisiologia
5.
Clin Immunol ; 137(2): 281-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20797908

RESUMO

To establish the relevance of targeting disease-associated T cells in anti-RNP-associated glomerulonephritis, mice developing nephritis following immunization with U1-70-kd small nuclear ribonucleoprotein (snRNP) were treated with a single dose of irradiated antigen-selected T cell vaccine. T cell receptor usage in nephritic kidneys revealed oligoclonal use of T Cell Receptor V Beta (TRBV) genes as previously found in spleens and lungs of immunized mice with pulmonary disease. The CDR3 regions from T cell isolates showed sequence homology to those in humans with anti-RNP autoimmunity. Following T cell vaccination, urinalysis returned to normal in 5/7 treated mice (71% response rate) whereas all mock-treated mice continued to have an active urinary sediment (Fisher's Exact p=0.02). An oligoclonal population of T cells homologous to those identified in humans with anti-RNP autoimmunity is implicated in disease pathogenesis, and T cell vaccination is associated with a high rate of clinical improvement in established nephritis.


Assuntos
Nefrite Lúpica/terapia , Ribonucleoproteína Nuclear Pequena U1/imunologia , Linfócitos T/imunologia , Vacinação/métodos , Sequência de Aminoácidos/genética , Animais , Autoanticorpos/sangue , Autoanticorpos/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Proliferação de Células , Regiões Determinantes de Complementaridade/genética , Antígenos HLA-DR/genética , Humanos , Glomérulos Renais/patologia , Nefrite Lúpica/imunologia , Nefrite Lúpica/patologia , Nefrite Lúpica/urina , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Ribonucleoproteína Nuclear Pequena U1/genética , Baço/citologia , Baço/imunologia , Linfócitos T/patologia , Urinálise
6.
J Biol Chem ; 285(24): 18928-38, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20400506

RESUMO

Calnexin is a molecular chaperone and a component of the quality control of the secretory pathway. We have generated calnexin gene-deficient mice (cnx(-/-)) and showed that calnexin deficiency leads to myelinopathy. Calnexin-deficient mice were viable with no discernible effects on other systems, including immune function, and instead they demonstrated dysmyelination as documented by reduced conductive velocity of nerve fibers and electron microscopy analysis of sciatic nerve and spinal cord. Myelin of the peripheral and central nervous systems of cnx(-/-) mice was disorganized and decompacted. There were no abnormalities in neuronal growth, no loss of neuronal fibers, and no change in fictive locomotor pattern in the absence of calnexin. This work reveals a previously unrecognized and important function of calnexin in myelination and provides new insights into the mechanisms responsible for myelin diseases.


Assuntos
Calnexina/genética , Calnexina/fisiologia , Doenças Desmielinizantes/metabolismo , Bainha de Mielina/metabolismo , Animais , Animais Recém-Nascidos , Calnexina/metabolismo , Membrana Celular/metabolismo , Eletrofisiologia/métodos , Retículo Endoplasmático/metabolismo , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dobramento de Proteína , Nervo Isquiático/metabolismo , Nervo Isquiático/ultraestrutura , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura
7.
Neuron ; 49(2): 229-41, 2006 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-16423697

RESUMO

In sensory neurons, successful maturation of signaling molecules and regulation of Ca2+ are essential for cell function and survival. Here, we demonstrate a multifunctional role for calnexin as both a molecular chaperone uniquely required for rhodopsin maturation and a regulator of Ca2+ that enters photoreceptor cells during light stimulation. Mutations in Drosophila calnexin lead to severe defects in rhodopsin (Rh1) expression, whereas other photoreceptor cell proteins are expressed normally. Mutations in calnexin also impair the ability of photoreceptor cells to control cytosolic Ca2+ levels following activation of the light-sensitive TRP channels. Finally, mutations in calnexin lead to retinal degeneration that is enhanced by light, suggesting that calnexin's function as a Ca2+ buffer is important for photoreceptor cell survival. Our results illustrate a critical role for calnexin in Rh1 maturation and Ca2+ regulation and provide genetic evidence that defects in calnexin lead to retinal degeneration.


Assuntos
Sinalização do Cálcio/fisiologia , Calnexina/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Rodopsina/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Northern Blotting , Cálcio/metabolismo , Sobrevivência Celular/fisiologia , Cromatografia de Afinidade , DNA/biossíntese , DNA/genética , Drosophila , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Luz , Microscopia Eletrônica , Chaperonas Moleculares , Dados de Sequência Molecular , Mutação/genética , Mutação/fisiologia , Técnicas de Patch-Clamp , Células Fotorreceptoras de Invertebrados/citologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Rodopsina/biossíntese , Rodopsina/genética
8.
J Cell Biol ; 169(3): 471-9, 2005 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-15883198

RESUMO

Drosophila melanogaster phototransduction proceeds via a phospholipase C (PLC)-triggered cascade of phosphatidylinositol (PI) lipid modifications, many steps of which remain undefined. We describe the involvement of the lipid phosphatidic acid and the enzyme that generates it, phospholipase D (Pld), in this process. Pld(null) flies exhibit decreased light sensitivity as well as a heightened susceptibility to retinal degeneration. Pld overexpression rescues flies lacking PLC from light-induced, metarhodopsin-mediated degeneration and restores visual signaling in flies lacking the PI transfer protein, which is a key player in the replenishment of the PI 4,5-bisphosphate (PIP2) substrate used by PLC to transduce light stimuli into neurological signals. Altogether, these findings suggest that Pld facilitates phototransduction by maintaining adequate levels of PIP2 and by protecting the visual system from metarhodopsin-induced, low light degeneration.


Assuntos
Drosophila melanogaster/enzimologia , Fosfolipase D/metabolismo , Fosfolipídeos/metabolismo , Células Fotorreceptoras de Invertebrados/enzimologia , Retina/enzimologia , Visão Ocular/fisiologia , Animais , Drosophila melanogaster/ultraestrutura , Luz/efeitos adversos , Proteínas de Membrana/metabolismo , Mutação/fisiologia , Ácidos Fosfatídicos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase D/genética , Proteínas de Transferência de Fosfolipídeos/metabolismo , Células Fotorreceptoras de Invertebrados/ultraestrutura , Retina/ultraestrutura , Degeneração Retiniana/enzimologia , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Rodopsina/metabolismo , Rodopsina/efeitos da radiação , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA