Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Nanotechnology ; 34(41)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503937

RESUMO

Understanding and controlling nanoscale interface phenomena, such as band bending and secondary phase formation, is crucial for electronic device optimization. In granular metal (GM) studies, where metal nanoparticles are embedded in an insulating matrix, the importance of interface phenomena is frequently neglected. We demonstrate that GMs can serve as an exemplar system for evaluating the role of secondary phases at interfaces through a combination of x-ray photoemission spectroscopy (XPS) and electrical transport studies. We investigated SiNxas an alternative to more commonly used oxide-insulators, as SiNx-based GMs may enable high temperature applications when paired with refractory metals. Comparing Co-SiNxand Mo-SiNxGMs, we found that, in the tunneling-dominated insulating regime, Mo-SiNxhad reduced metal-silicide formation and orders-of-magnitude lower conductivity. XPS measurements indicate that metal-silicide and metal-nitride formation are mitigatable concerns in Mo-SiNx. Given the metal-oxide formation seen in other GMs, SiNxis an appealing alternative for metals that readily oxidize. Furthermore, SiNxprovides a path to metal-nitride nanostructures, potentially useful for various applications in plasmonics, optics, and sensing.

3.
J Phys Condens Matter ; 34(20)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35289307

RESUMO

We present an in-depth study of metal-insulator interfaces within granular metal (GM) films and correlate their interfacial interactions with structural and electrical transport properties. Nominally 100 nm thick GM films of Co and Mo dispersed within yttria-stabilized zirconia (YSZ), with volumetric metal fractions (φ) from 0.2-0.8, were grown by radio frequency co-sputtering from individual metal and YSZ targets. Scanning transmission electron microscopy and DC transport measurements find that the resulting metal islands are well-defined with 1.7-2.6 nm average diameters and percolation thresholds betweenφ= 0.4-0.5. The room temperature conductivities for theφ= 0.2 samples are several orders of magnitude larger than previously-reported for GMs. X-ray photoemission spectroscopy indicates both oxygen vacancy formation within the YSZ and band-bending at metal-insulator interfaces. The higher-than-predicted conductivity is largely attributed to these interface interactions. In agreement with recent theory, interactions that reduce the change in conductivity across the metal-insulator interface are seen to prevent sharp conductivity drops when the metal concentration decreases below the percolation threshold. These interface interactions help interpret the broad range of conductivities reported throughout the literature and can be used to tune the conductivities of future GMs.

4.
Nanotechnology ; 32(37)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34165443

RESUMO

The high theoretical lithium storage capacity of Sn makes it an enticing anode material for Li-ion batteries (LIBs); however, its large volumetric expansion during Li-Sn alloying must be addressed. Combining Sn with metals that are electrochemically inactive to lithium leads to intermetallics that can alleviate volumetric expansion issues and still enable high capacity. Here, we present the cycling behavior of a nanostructured MnSn2intermetallic used in LIBs. Nanostructured MnSn2is synthesized by reducing Sn and Mn salts using a hot injection method. The resulting MnSn2is characterized by x-ray diffraction and transmission electron microscopy and then is investigated as an anode for LIBs. The MnSn2electrode delivers a stable capacity of 514 mAh g-1after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. Unlike other Sn-intermetallic anodes, an activation overpotential peak near 0.9 V versus Li is present from the second lithiation and in subsequent cycles. We hypothesize that this effect is likely due to electrolyte reactions with segregated Mn from MnSn2. To prevent these undesirable Mn reactions with the electrolyte, a 5 nm TiO2protection layer is applied onto the MnSn2electrode surface via atomic layer deposition. The TiO2-coated MnSn2electrodes do not exhibit the activation overpotential peak. The protection layer also increases the capacity to 612 mAh g-1after 100 cycles at a C/10 current rate with a Coulombic efficiency >99%. This higher capacity is achieved by suppressing the parasitic reaction of Mn with the electrolyte, as is supported by x-ray photoelectron spectroscopy analysis.

5.
Sci Rep ; 8(1): 16487, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405192

RESUMO

Metal films deposited on graphene are known to influence its electronic properties, but little is known about graphene's interactions with very low work function rare earth metals. Here we report on the work functions of a wide range of metals deposited on n-type epitaxial graphene (EG) as measured by Kelvin Probe Force Microscopy (KPFM). We compare the behaviors of rare earth metals (Pr, Eu, Er, Yb, and Y) with commonly used noble metals (Cr, Cu, Rh, Ni, Au, and Pt). The rare earth films oxidize rapidly, and exhibit unique behaviors when on graphene. We find that the measured work function of the low work function group is consistently higher than predicted, unlike the noble metals, which is likely due to rapid oxidation during measurement. Some of the low work function metals interact with graphene; for example, Eu exhibits bonding anomalies along the metal-graphene perimeter. We observe no correlation between metal work function and photovoltage, implying the metal-graphene interface properties are a more determinant factor. Yb emerges as the best choice for future applications requiring a low-work function electrical contact on graphene. Yb films have the strongest photovoltage response and maintains a relatively low surface roughness, ~5 nm, despite sensitivity to oxidation.

6.
ACS Appl Mater Interfaces ; 6(11): 8590-601, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24784352

RESUMO

The elementary processes associated with electron beam-induced deposition (EBID) and post-deposition treatment of structures created from three metal(II)(hfac)2 organometallic precursors (metal = Pt, Pd, Cu; hfac = CF3C(O)CHC(O)CF3) have been studied using surface analytical techniques. Electron induced reactions of adsorbed metal(II)(hfac)2 molecules proceeds in two stages. For comparatively low electron doses (doses <1 × 10(17) e(-)/cm(2)) decomposition of the parent molecules leads to loss of carbon and oxygen, principally through the formation of carbon monoxide. Fluorine and hydrogen atoms are also lost by electron stimulated C-F and C-H bond cleavage, respectively. Collectively, these processes are responsible for the loss of a significant fraction (≥ 50%) of the oxygen and fluorine atoms, although most (>80%) of the carbon atoms remain. As a result of these various transformations the reduced metal atoms become encased in an organic matrix that is stabilized toward further electron stimulated carbon or oxygen loss, although fluorine and hydrogen can still desorb in the second stage of the reaction under the influence of sustained electron irradiation as a result of C-F and C-H bond cleavage, respectively. This reaction sequence explains why EBID structures created from metal(II)(hfac)2 precursors in electron microscopes contain reduced metal atoms embedded within an oxygen-containing carbonaceous matrix. Except for the formation of copper fluoride from Cu(II)(hfac)2, because of secondary reactions between partially reduced copper atoms and fluoride ions, the chemical composition of EBID films and behavior of metal(II)(hfac)2 precursors was independent of the transition metal's chemical identity. Annealing studies of EBID structures created from Pt(II)(hfac)2 suggest that the metallic character of deposited Pt atoms could be increased by using post deposition annealing or elevated substrate temperatures (>25 °C) during deposition. By exposing EBID structures created from Cu(II)(hfac)2 to atomic oxygen followed by atomic hydrogen, organic contaminants could be abated without annealing.

7.
Phys Chem Chem Phys ; 15(11): 4002-15, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23400276

RESUMO

Tungsten hexacarbonyl (W(CO)(6)) is frequently used as an organometallic precursor to create metal-containing nanostructures in electron beam induced deposition (EBID). However, the fundamental electron stimulated reactions responsible for both tungsten deposition and the incorporation of carbon and oxygen atom impurities remain unclear. To address this issue we have studied the effect of 500 eV incident electrons on nanometer thick films of W(CO)(6) under Ultra-High Vacuum (UHV) conditions. Results from X-ray Photoelectron Spectroscopy, Mass Spectrometry, and Infrared Spectroscopy reveal that the initial step involves electron stimulated desorption of multiple CO ligands from parent W(CO)(6) molecules and the formation of partially decarbonylated tungsten species (W(x)(CO)(y)). Subsequent electron interactions with these W(x)(CO)(y) species lead to ligand decomposition rather than further CO desorption, ultimately producing oxidized tungsten atoms incorporated in a carbonaceous matrix. The presence of co-adsorbed water during electron irradiation increased the extent of tungsten oxidation. The electron stimulated deposition cross-section of W(CO)(6) at an incident electron energy of 500 eV was calculated to be 6.50 × 10(-16) cm(-2). When considered collectively with findings from previous precursors (MeCpPtMe(3) and Pt(PF(3))(4)), results from the present study are consistent with the idea that the electron induced reactions in EBID are initiated by low energy secondary electrons generated by primary beam-substrate interactions, rather than by the primary beam itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA