Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Genet Med ; 26(4): 101068, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38193396

RESUMO

PURPOSE: Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching. METHODS: Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim. RESULTS: 33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3. CONCLUSION: Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.


Assuntos
Genótipo , Humanos , Fenótipo , Mutação , Homozigoto , Estudos de Associação Genética
2.
Euro Surveill ; 28(31)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37535472

RESUMO

BackgroundEpidemics of keratoconjunctivitis may involve various aetiological agents. Microsporidia are an uncommon difficult-to-diagnose cause of such outbreaks.AimDuring the third quarter of 2022, a keratoconjunctivitis outbreak was reported across Israel, related to common water exposure to the Sea of Galilee. We report a comprehensive diagnostic approach that identified Vittaforma corneae as the aetiology, serving as proof of concept for using real-time metagenomics for outbreak investigation.MethodsCorneal scraping samples from a clinical case were subjected to standard microbiological testing. Samples were tested by calcofluor white staining and metagenomic short-read sequencing. We analysed the metagenome for taxonomical assignment and isolation of metagenome-assembled genome (MAG). Targets for a novel PCR were identified, and the assay was applied to clinical and environmental samples and confirmed by long-read metagenomic sequencing.ResultsFluorescent microscopy was suggestive of microsporidiosis. The most abundant species (96.5%) on metagenomics analysis was V. corneae. Annotation of the MAG confirmed the species assignment. A unique PCR target in the microsporidian rRNA gene was identified and validated against the clinical sample. The assay and metagenomic sequencing confirmed V. corneae in an environmental sludge sample collected at the exposure site.ConclusionsThe real-time utilisation of metagenomics allowed species detection and development of diagnostic tools, which aided in outbreak source tracking and can be applied for future cases. Metagenomics allows a fully culture-independent investigation and is an important modality for public health microbiology.


Assuntos
Ceratoconjuntivite , Microsporídios , Humanos , Metagenoma , Metagenômica , Israel/epidemiologia , Ceratoconjuntivite/diagnóstico , Ceratoconjuntivite/epidemiologia , Ceratoconjuntivite/genética , Microsporídios/genética , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala
3.
Cancers (Basel) ; 15(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37444582

RESUMO

Multiple myeloma (MM) is characterized by recurrent relapses. Consequently, patients receive multiple therapy lines, including alkylating agents and immune modulators, which have been associated with secondary malignancies such as myelodysplastic syndrome (MDS). Anti-B-cell maturation antigen (BCMA) chimeric antigen receptor T cell (CART) therapy is efficacious in patients with relapsed/refractory (R/R) MM. However, the long-term complications, particularly MDS, are not well understood. Whether CART therapy causes or promotes MDS has not been thoroughly investigated. In this study, we explored the causal relationship between MDS and CART therapy. We retrospectively examined the prevalence of MDS-related morphological and mutational changes before and after administration of CART therapy in five patients. Among them, four developed MDS after CART therapy, while one had pre-existing MDS prior to CART. None of the four patients who developed post-CART MDS showed morphological MDS changes prior to CART therapy. However, all four patients exhibited molecular alterations associated with MDS in their pre-CART as well as post-CART therapy bone marrow. No new mutations were observed. Our findings provide initial evidence suggesting that anti-BCMA CART therapy in MM may promote expansion of pre-existing MDS clones rather than causing development of new clones.

4.
Eur J Hum Genet ; 31(2): 164-168, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36071243

RESUMO

The yield of chromosomal microarray analysis (CMA) is well established in structurally normal fetuses (0.4-1.4%). We aimed to determine the incremental yield of exome sequencing (ES) in this population. From February 2017 to April 2022, 1,526 fetuses were subjected to ES; 482 of them were structurally normal (31.6%). Only pathogenic and likely pathogenic (P/LP) variants, per the American College of Medical Genetics and Genomics (ACMG) classification, were reported. Additionally, ACMG secondary findings relevant to childhood were reported. Four fetuses (4/482; 0.8%) had P/LP variants indicating a moderate to severe disease in ATP7B, NR2E3, SPRED1 and FGFR3, causing Wilson disease, Enhanced S-cone syndrome, Legius and Muenke syndromes, respectively. Two fetuses had secondary findings, in RET and DSP. Our data suggest that offering only CMA for structurally normal fetuses may provide false reassurance. Prenatal ES mandates restrictive analysis and careful management combined with pre and post-test genetic counseling.


Assuntos
Aconselhamento Genético , Genômica , Feminino , Gravidez , Humanos , Criança , Sequenciamento do Exoma , Análise em Microsséries , Feto , Diagnóstico Pré-Natal
5.
Cell Death Dis ; 13(11): 969, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36400754

RESUMO

Multiple myeloma (MM) causes approximately 20% of deaths from blood cancers. Notwithstanding significant therapeutic progress, such as with proteasome inhibitors (PIs), MM remains incurable due to the development of resistance. mTORC1 is a key metabolic regulator, which frequently becomes dysregulated in cancer. While mTORC1 inhibitors reduce MM viability and synergize with other therapies in vitro, clinically, mTORC1 inhibitors are not effective for MM. Here we show that the inactivation of mTORC1 is an intrinsic response of MM to PI treatment. Genetically enforced hyperactivation of mTORC1 in MM was sufficient to compromise tumorigenicity in mice. In vitro, mTORC1-hyperactivated MM cells gained sensitivity to PIs and hypoxia. This was accompanied by increased mitochondrial stress and activation of the eIF2α kinase HRI, which initiates the integrated stress response. Deletion of HRI elevated the toxicity of PIs in wt and mTORC1-activated MM. Finally, we identified the drug PMA as a robust inducer of mTORC1 activity, which synergized with PIs in inducing MM cell death. These results help explain the clinical inefficacy of mTORC1 inhibitors in MM. Our data implicate mTORC1 induction and/or HRI inhibition as pharmacological strategies to enhance MM therapy by PIs.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Animais , Camundongos , Inibidores de Proteassoma/farmacologia , Inibidores de Proteassoma/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transdução de Sinais , eIF-2 Quinase/metabolismo
6.
Brain Commun ; 3(3): fcab197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34514401

RESUMO

Biallelic pathogenic variants in PRKN (PARK2), encoding the E3 ubiquitin ligase parkin, lead to early-onset Parkinson's disease. Structural variants, including duplications or deletions, are common in PRKN due to their location within the fragile site FRA6E. These variants are readily detectable by copy number variation analysis. We studied four siblings with levodopa-responsive dystonia by exome sequencing followed by genome sequencing. Affected individuals developed juvenile levodopa-responsive dystonia with subsequent appearance of parkinsonism and motor fluctuations that improved by subthalamic stimulation. Exome sequencing and copy number variation analysis were not diagnostic, yet revealed a shared homozygous block including PRKN. Genome sequencing revealed an inversion within PRKN, with intronic breakpoints flanking exon 5. Breakpoint junction analysis implicated non-homologous end joining and possibly replicative mechanisms as the repair pathways involved. Analysis of cDNA indicated skipping of exon 5 (84 bp) that was replaced by 93 bp of retained intronic sequence, preserving the reading frame yet altering a significant number of residues. Balanced copy number inversions in PRKN are associated with a severe phenotype. Such structural variants, undetected by exome analysis and by copy number variation analysis, should be considered in the relevant clinical setting. These findings raise the possibility that PRKN structural variants are more common than currently estimated.

7.
Genome Biol ; 22(1): 92, 2021 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-33781308

RESUMO

BACKGROUND: Post-zygotic mutations incurred during DNA replication, DNA repair, and other cellular processes lead to somatic mosaicism. Somatic mosaicism is an established cause of various diseases, including cancers. However, detecting mosaic variants in DNA from non-cancerous somatic tissues poses significant challenges, particularly if the variants only are present in a small fraction of cells. RESULTS: Here, the Brain Somatic Mosaicism Network conducts a coordinated, multi-institutional study to examine the ability of existing methods to detect simulated somatic single-nucleotide variants (SNVs) in DNA mixing experiments, generate multiple replicates of whole-genome sequencing data from the dorsolateral prefrontal cortex, other brain regions, dura mater, and dural fibroblasts of a single neurotypical individual, devise strategies to discover somatic SNVs, and apply various approaches to validate somatic SNVs. These efforts lead to the identification of 43 bona fide somatic SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28. Guided by these results, we devise best practices for calling mosaic SNVs from 250× whole-genome sequencing data in the accessible portion of the human genome that achieve 90% specificity and sensitivity. Finally, we demonstrate that analysis of multiple bulk DNA samples from a single individual allows the reconstruction of early developmental cell lineage trees. CONCLUSIONS: This study provides a unified set of best practices to detect somatic SNVs in non-cancerous tissues. The data and methods are freely available to the scientific community and should serve as a guide to assess the contributions of somatic SNVs to neuropsychiatric diseases.


Assuntos
Encéfalo/metabolismo , Estudos de Associação Genética , Variação Genética , Alelos , Mapeamento Cromossômico , Biologia Computacional/métodos , Estudos de Associação Genética/métodos , Genômica/métodos , Células Germinativas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Especificidade de Órgãos/genética , Polimorfismo de Nucleotídeo Único
8.
Biol Psychiatry ; 82(11): 794-805, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28577753

RESUMO

BACKGROUND: Exposure to drugs of abuse alters the epigenetic landscape of the brain's reward regions, such as the nucleus accumbens. We investigated how combinations of chromatin modifications affect genes that regulate responses to cocaine. We focused on Auts2, a gene linked to human evolution and cognitive disorders, which displays strong clustering of cocaine-induced chromatin modifications in this brain region. METHODS: We combined chromosome conformation capture, circularized chromosome conformation capture, and related approaches with behavioral paradigms relevant to cocaine phenotypes. Cell type-specific functions were assessed by fluorescence-activated cell sorting and viral-mediated overexpression in Cre-dependent mouse lines. RESULTS: We observed that Auts2 gene expression is increased by repeated cocaine administration specifically in D2-type medium spiny neurons in the nucleus accumbens, an effect seen in male but not female mice. Auts2 messenger RNA expression was also upregulated postmortem in the nucleus accumbens of male human cocaine addicts. We obtained evidence that chromosomal looping, bypassing 1524 kb of linear genome, connects Auts2 to the Caln1 gene locus under baseline conditions. This looping was disrupted after repeated cocaine exposure, resulting in increased expression of both genes in D2-type medium spiny neurons. Cocaine exposure reduces binding of CCCTC-binding factor, a chromosomal scaffolding protein, and increases histone and DNA methylation at the Auts-Caln1 loop base in the nucleus accumbens. Cell type-specific overexpression of Auts2 or Caln1 in D2-type medium spiny neurons demonstrated that both genes promote cocaine reward. CONCLUSIONS: These findings suggest that cocaine-induced alterations of neuronal three-dimensional genome organization destabilize higher order chromatin at specific loci that regulate responses to the drug.


Assuntos
Cromatina/efeitos dos fármacos , Cocaína/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Condicionamento Operante/efeitos dos fármacos , Proteínas do Citoesqueleto , Metilação de DNA/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Moleculares , Conformação Molecular , Neuroblastoma/patologia , Proteínas Nucleares/genética , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo , Fatores de Transcrição , Adulto Jovem
9.
Science ; 356(6336)2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28450582

RESUMO

Neuropsychiatric disorders have a complex genetic architecture. Human genetic population-based studies have identified numerous heritable sequence and structural genomic variants associated with susceptibility to neuropsychiatric disease. However, these germline variants do not fully account for disease risk. During brain development, progenitor cells undergo billions of cell divisions to generate the ~80 billion neurons in the brain. The failure to accurately repair DNA damage arising during replication, transcription, and cellular metabolism amid this dramatic cellular expansion can lead to somatic mutations. Somatic mutations that alter subsets of neuronal transcriptomes and proteomes can, in turn, affect cell proliferation and survival and lead to neurodevelopmental disorders. The long life span of individual neurons and the direct relationship between neural circuits and behavior suggest that somatic mutations in small populations of neurons can significantly affect individual neurodevelopment. The Brain Somatic Mosaicism Network has been founded to study somatic mosaicism both in neurotypical human brains and in the context of complex neuropsychiatric disorders.


Assuntos
Encéfalo/anormalidades , Transtornos Mentais/genética , Mosaicismo , Doenças do Sistema Nervoso/genética , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Encéfalo/metabolismo , Divisão Celular/genética , Dano ao DNA , Análise Mutacional de DNA/métodos , Reparo do DNA/genética , Replicação do DNA , Genoma Humano , Células Germinativas/metabolismo , Humanos , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo
10.
Nat Commun ; 6: 7438, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26074426

RESUMO

Beyond its role in host defense, bacterial DNA methylation also plays important roles in the regulation of gene expression, virulence and antibiotic resistance. Bacterial cells in a clonal population can generate epigenetic heterogeneity to increase population-level phenotypic plasticity. Single molecule, real-time (SMRT) sequencing enables the detection of N6-methyladenine and N4-methylcytosine, two major types of DNA modifications comprising the bacterial methylome. However, existing SMRT sequencing-based methods for studying bacterial methylomes rely on a population-level consensus that lacks the single-cell resolution required to observe epigenetic heterogeneity. Here, we present SMALR (single-molecule modification analysis of long reads), a novel framework for single molecule-level detection and phasing of DNA methylation. Using seven bacterial strains, we show that SMALR yields significantly improved resolution and reveals distinct types of epigenetic heterogeneity. SMALR is a powerful new tool that enables de novo detection of epigenetic heterogeneity and empowers investigation of its functions in bacterial populations.


Assuntos
Metilação de DNA , DNA Bacteriano/metabolismo , Epigênese Genética , Sequência de Bases , Campylobacter jejuni/genética , Caulobacter crescentus/genética , Chromohalobacter/genética , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Escherichia coli/genética , Genoma Bacteriano , Geobacter/genética , Helicobacter pylori/genética , Dados de Sequência Molecular , Análise de Sequência de DNA
11.
Front Immunol ; 5: 240, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904588

RESUMO

The Igκ locus undergoes a variety of different molecular processes during B cell development, including V(D)J rearrangement and somatic hypermutations (SHM), which are influenced by cis regulatory regions (RRs) within the locus. The Igκ locus includes three characterized RRs termed the intronic (iEκ), 3'Eκ, and Ed enhancers. We had previously noted that a region of DNA upstream of the iEκ and matrix attachment region (MAR) was necessary for demethylation of the locus in cell culture. In this study, we further characterized this region, which we have termed Dm, for demethylation element. Pre-rearranged Igκ transgenes containing a deletion of the entire Dm region, or of a Pax5-binding site within the region, fail to undergo efficient CpG demethylation in mature B cells in vivo. Furthermore, we generated mice with a deletion of the full Dm region at the endogenous Igκ locus. The most prominent phenotype of these mice is reduced SHM in germinal center B cells in Peyer's patches. In conclusion, we propose the Dm element as a novel Pax5-binding cis regulatory element, which works in concert with the known enhancers, and plays a role in Igκ demethylation and SHM.

12.
Nature ; 490(7421): 561-5, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23023124

RESUMO

Although most genes are expressed biallelically, a number of key genomic sites--including immune and olfactory receptor regions--are controlled monoallelically in a stochastic manner, with some cells expressing the maternal allele and others the paternal allele in the target tissue. Very little is known about how this phenomenon is regulated and programmed during development. Here, using mouse immunoglobulin-κ (Igκ) as a model system, we demonstrate that although individual haematopoietic stem cells are characterized by allelic plasticity, early lymphoid lineage cells become committed to the choice of a single allele, and this decision is then stably maintained in a clonal manner that predetermines monoallelic rearrangement in B cells. This is accompanied at the molecular level by underlying allelic changes in asynchronous replication timing patterns at the κ locus. These experiments may serve to define a new concept of stem cell plasticity.


Assuntos
Alelos , Linhagem da Célula , Rearranjo Gênico de Cadeia Leve de Linfócito B/genética , Cadeias kappa de Imunoglobulina/genética , Células Precursoras de Linfócitos B/citologia , Células Precursoras de Linfócitos B/metabolismo , Animais , Imunoprecipitação da Cromatina , Células Clonais/citologia , Células Clonais/imunologia , Células Clonais/metabolismo , Período de Replicação do DNA , Feminino , Hematopoese , Humanos , Cadeias kappa de Imunoglobulina/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Modelos Imunológicos , Células Precursoras de Linfócitos B/imunologia , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...