Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6691): 93-100, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484036

RESUMO

Numerous nonantibiotic drugs have potent antibacterial activity and can adversely affect the human microbiome. The mechanistic underpinning of this toxicity remains largely unknown. We investigated the antibacterial activity of 200 drugs using genetic screens with thousands of barcoded Escherichia coli knockouts. We analyzed 2 million gene-drug interactions underlying drug-specific toxicity. Network-based analysis of drug-drug similarities revealed that antibiotics clustered into modules that are consistent with the mode of action of their established classes, whereas nonantibiotics remained unconnected. Half of the nonantibiotics clustered into separate modules, potentially revealing shared and unexploited targets for new antimicrobials. Analysis of efflux systems revealed that they widely affect antibiotics and nonantibiotics alike, suggesting that the impact of nonantibiotics on antibiotic cross-resistance should be investigated closely in vivo.


Assuntos
Antibacterianos , Microbiota , Humanos , Antibacterianos/química , Antibacterianos/classificação , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos , Microbiota/genética
2.
Elife ; 122023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36734518

RESUMO

Drug metabolism by the microbiome can influence anticancer treatment success. We previously suggested that chemotherapies with antimicrobial activity can select for adaptations in bacterial drug metabolism that can inadvertently influence the host's chemoresistance. We demonstrated that evolved resistance against fluoropyrimidine chemotherapy lowered its efficacy in worms feeding on drug-evolved bacteria (Rosener et al., 2020). Here, we examine a model system that captures local interactions that can occur in the tumor microenvironment. Gammaproteobacteria-colonizing pancreatic tumors can degrade the nucleoside-analog chemotherapy gemcitabine and, in doing so, can increase the tumor's chemoresistance. Using a genetic screen in Escherichia coli, we mapped all loss-of-function mutations conferring gemcitabine resistance. Surprisingly, we infer that one third of top resistance mutations increase or decrease bacterial drug breakdown and therefore can either lower or raise the gemcitabine load in the local environment. Experiments in three E. coli strains revealed that evolved adaptation converged to inactivation of the nucleoside permease NupC, an adaptation that increased the drug burden on co-cultured cancer cells. The two studies provide complementary insights on the potential impact of microbiome adaptation to chemotherapy by showing that bacteria-drug interactions can have local and systemic influence on drug activity.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Escherichia coli/genética , Antimetabólitos Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Cell Syst ; 12(11): 1064-1078.e7, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34469744

RESUMO

Metabolic cross-feeding frequently underlies mutualistic relationships in natural microbial communities and is often exploited to assemble synthetic microbial consortia. We systematically identified all single-gene knockouts suitable for imposing cross-feeding in Escherichia coli and used this information to assemble syntrophic communities. Most strains benefiting from shared goods were dysfunctional in biosynthesis of amino acids, nucleotides, and vitamins or mutants in central carbon metabolism. We tested cross-feeding potency in 1,444 strain pairs and mapped the interaction network between all functional groups of mutants. This network revealed that auxotrophs for vitamins are optimal cooperators. Lastly, we monitored how assemblies composed of dozens of auxotrophs change over time and observed that they rapidly and repeatedly coalesced to seven strain consortia composed primarily from vitamin auxotrophs. The composition of emerging consortia suggests that they were stabilized by multiple cross-feeding interactions. We conclude that vitamins are ideal shared goods since they optimize consortium growth while still imposing member co-dependence.


Assuntos
Escherichia coli , Microbiota , Escherichia coli/genética , Consórcios Microbianos , Simbiose , Vitaminas
4.
Elife ; 92020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33252330

RESUMO

Metabolism of host-targeted drugs by the microbiome can substantially impact host treatment success. However, since many host-targeted drugs inadvertently hamper microbiome growth, repeated drug administration can lead to microbiome evolutionary adaptation. We tested if evolved bacterial resistance against host-targeted drugs alters their drug metabolism and impacts host treatment success. We used a model system of Caenorhabditis elegans, its bacterial diet, and two fluoropyrimidine chemotherapies. Genetic screens revealed that most of loss-of-function resistance mutations in Escherichia coli also reduced drug toxicity in the host. We found that resistance rapidly emerged in E. coli under natural selection and converged to a handful of resistance mechanisms. Surprisingly, we discovered that nutrient availability during bacterial evolution dictated the dietary effect on the host - only bacteria evolving in nutrient-poor media reduced host drug toxicity. Our work suggests that bacteria can rapidly adapt to host-targeted drugs and by doing so may also impact the host.


Assuntos
Antibacterianos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Floxuridina/farmacologia , Fluoruracila/farmacologia , Pirimidinas/farmacologia , Animais , Antimetabólitos/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Caenorhabditis elegans/metabolismo , Código de Barras de DNA Taxonômico , Evolução Molecular Direcionada , Farmacorresistência Bacteriana , Floxuridina/toxicidade , Fluoruracila/toxicidade , Deleção de Genes , Pirimidinas/química , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
5.
PLoS Biol ; 17(6): e3000348, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31242174

RESUMO

Technological breakthroughs in the past two decades have ushered in a new era of biomedical research, turning it into an information-rich and technology-driven science. This scientific revolution, though evident to the research community, remains opaque to nonacademic audiences. Such knowledge gaps are likely to persist without revised strategies for science education and public outreach. To address this challenge, we developed a unique outreach program to actively engage over 100 high-school students in the investigation of multidrug-resistant bacteria. Our program uses robotic automation and interactive web-based tools to bridge geographical distances, scale up the number of participants, and reduce overall cost. Students and teachers demonstrated high engagement and interest throughout the project and valued its unique approach. This educational model can be leveraged to advance the massive open online courses movement that is already transforming science education.


Assuntos
Educação/métodos , Disseminação de Informação/métodos , Robótica/educação , Adolescente , Automação , Relações Comunidade-Instituição/tendências , Farmacorresistência Bacteriana Múltipla , Feminino , Humanos , Internet , Masculino , Instituições Acadêmicas , Estudantes , Ensino/educação , Tecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA