Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36143436

RESUMO

Bacterial behavior has been studied under microgravity conditions, but very little is known about it under lunar and Martian gravitational regimes. An Earth-based approach was designed and implemented using inclined clinostats and an in-house-developed code to determine the optimal clinorotation angular speed for bacterial liquid cultures of 5 RPM. With this setup, growth dynamics, phenotypic changes, and sensitivity to antibiotics (minimum inhibitory concentration (MIC) of two different classes of antibiotics) for three Escherichia coli strains (including uropathogenic) were examined under simulated micro-, lunar, and Martian gravities. The results included increased growth under simulated micro- and lunar gravities for some strains, and higher concentrations of antibiotics needed under simulated lunar gravity with respect to simulated micro- and Martian gravities. Clinostat-produced results can be considered suggestive but not determinative of what might be expected in altered gravity, as there is still a need to systematically verify these simulation devices' ability to accurately replicate phenomena observed in space. Nevertheless, this approach serves as a baseline to start interrogating key cellular and molecular aspects relevant to microbial processes on the lunar and Martian surfaces.

2.
Sci Adv ; 6(48)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33239295

RESUMO

Space manifolds act as the boundaries of dynamical channels enabling fast transportation into the inner- and outermost reaches of the Solar System. Besides being an important element in spacecraft navigation and mission design, these manifolds can also explain the apparent erratic nature of comets and their eventual demise. Here, we reveal a notable and hitherto undetected ornamental structure of manifolds, connected in a series of arches that spread from the asteroid belt to Uranus and beyond. The strongest manifolds are found to be linked to Jupiter and have a profound control on small bodies over a wide and previously unconsidered range of three-body energies. Orbits on these manifolds encounter Jupiter on rapid time scales, where they can be transformed into collisional or escaping trajectories, reaching Neptune's distance in a mere decade. All planets generate similar manifolds that permeate the Solar System, allowing fast transport throughout, a true celestial autobahn.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA