Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 22(1): 267, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33853519

RESUMO

BACKGROUND: The back plays a vital role in horse locomotion, where the spine functions as a spring during the stride cycle. A complex interaction between the spine and the muscles of the back contribute to locomotion soundness, gait ability, and performance of riding and racehorses. Conformation is commonly used to select horses for breeding and performance in multiple horse breeds, where the back and croup conformation plays a significant role. The conformation of back and croup plays an important role on riding ability in Icelandic horses. However, the genes behind this trait are still unknown. Therefore, the aim of this study was to identify genomic regions associated with conformation of back and croup in Icelandic horses and to investigate their effects on riding ability. One hundred seventy-seven assessed Icelandic horses were included in the study. A genome-wide association analysis was performed using the 670 K+ Axiom Equine Genotyping Array, and the effects of different haplotypes in the top associated region were estimated for riding ability and additional conformation traits assessed during breeding field tests. RESULTS: A suggestive quantitative trait loci (QTL) for the score of back and croup was detected on Equus caballus (ECA) 22 (p-value = 2.67 × 10- 7). Haplotype analysis revealed two opposite haplotypes, which resulted in higher and lower scores of the back and croup, respectively (p-value < 0.001). Horses with the favorable haplotype were more inclined to have a well-balanced backline with an uphill conformation and had, on average, higher scores for the lateral gaits tölt (p-value = 0.02) and pace (p-value = 0.004). This genomic region harbors three genes: C20orf85, ANKRD60 and LOC100056167. ANKRD60 is associated with body height in humans. C20orf85 and ANKRD60 are potentially linked to adolescent idiopathic scoliosis in humans. CONCLUSIONS: Our results show that the detected QTL for conformation of back and croup is of importance for quality of lateral gaits in Icelandic horses. These findings could result in a genetic test to aid in the selection of breeding horses, thus they are of major interest for horse breeders. The results may also offer a gateway to comparative functional genomics by potentially linking both motor laterality and back inclination in horses with scoliosis in humans.


Assuntos
Marcha , Cavalos/genética , Locos de Características Quantitativas , Animais , Marcha/genética , Estudo de Associação Genômica Ampla , Fenótipo
2.
Genes (Basel) ; 11(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120906

RESUMO

Disorders of sex development (DSD) and reproduction are not uncommon among horses, though knowledge about their molecular causes is sparse. Here we characterized a ~200 kb homozygous deletion in chromosome 29 at 29.7-29.9 Mb. The region contains AKR1C genes which function as ketosteroid reductases in steroid hormone biosynthesis, including androgens and estrogens. Mutations in AKR1C genes are associated with human DSDs. Deletion boundaries, sequence properties and gene content were studied by PCR and whole genome sequencing of select deletion homozygotes and control animals. Deletion analysis by PCR in 940 horses, including 622 with DSDs and reproductive problems and 318 phenotypically normal controls, detected 67 deletion homozygotes of which 79% were developmentally or reproductively abnormal. Altogether, 8-9% of all abnormal horses were homozygous for the deletion, with the highest incidence (9.4%) among cryptorchids. The deletion was found in ~4% of our phenotypically normal cohort, ~1% of global warmblood horses and ponies, and ~7% of draught breeds of general horse population as retrieved from published data. Based on the abnormal phenotype of the carriers, the functionally relevant gene content, and the low incidence in general population, we consider the deletion in chromosome 29 as a risk factor for equine DSDs and reproductive disorders.


Assuntos
Transtornos do Desenvolvimento Sexual/genética , Hormônios Esteroides Gonadais/biossíntese , Cavalos/genética , Reprodução/genética , Animais , Cruzamento , Cromossomos/genética , Transtornos do Desenvolvimento Sexual/patologia , Genótipo , Hormônios Esteroides Gonadais/genética , Homozigoto , Polimorfismo de Nucleotídeo Único/genética , Reprodução/fisiologia , Fatores de Risco , Deleção de Sequência/genética , Desenvolvimento Sexual/genética
3.
Genet Sel Evol ; 51(1): 22, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31132983

RESUMO

BACKGROUND: Since the 1950s, the Norwegian-Swedish Coldblooded trotter (NSCT) has been intensively selected for harness racing performance. As a result, the racing performance of the NSCT has improved remarkably; however, this improved racing performance has also been accompanied by a gradual increase in inbreeding level. Inbreeding in NSCT has historically been monitored by using traditional methods that are based on pedigree analysis, but with recent advancements in genomics, the NSCT industry has shown interest in adopting molecular approaches for the selection and maintenance of this breed. Consequently, the aims of the current study were to estimate genomic-based inbreeding coefficients, i.e. the proportion of runs of homozygosity (ROH), for a sample of NSCT individuals using high-density genotyping array data, and subsequently to compare the resulting rate of genomic-based F (FROH) to that of pedigree-based F (FPED) coefficients within the breed. RESULTS: A total of 566 raced NSCT were available for analyses. Average FROH ranged from 1.78 to 13.95%. Correlations between FROH and FPED were significant (P < 0.001) and ranged from 0.27 to 0.56, with FPED and FROH from 2000 to 2009 increasing by 1.48 and 3.15%, respectively. Comparisons of ROH between individuals yielded 1403 regions that were present in at least 95% of the sampled horses. The average percentage of a single chromosome covered in ROH ranged from 9.84 to 18.82% with chromosome 31 and 18 showing, respectively, the largest and smallest amount of homozygosity. CONCLUSIONS: Genomic inbreeding coefficients were higher than pedigree inbreeding coefficients with both methods showing a gradual increase in inbreeding level in the NSCT breed between 2000 and 2009. Opportunities exist for the NSCT industry to develop programs that provide breeders with easily interpretable feedback on regions of the genome that are suboptimal from the perspective of genetic merit or that are sensitive to inbreeding within the population. The use of molecular data to identify genomic regions that may contribute to inbreeding depression in the NSCT will likely prove to be a valuable tool for the preservation of its genetic diversity in the long term.


Assuntos
Homozigoto , Cavalos/genética , Endogamia , Locos de Características Quantitativas , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Cavalos/fisiologia , Masculino , Linhagem , Seleção Artificial
4.
BMC Genomics ; 20(1): 104, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30717660

RESUMO

BACKGROUND: Horses have been strongly selected for speed, strength, and endurance-exercise traits since the onset of domestication. As a result, highly specialized horse breeds have developed with many modern horse breeds often representing closed populations with high phenotypic and genetic uniformity. However, a great deal of variation still exists between breeds, making the horse particularly well suited for genetic studies of athleticism. To identify genomic regions associated with athleticism as it pertains to trotting racing ability in the horse, the current study applies a pooled sequence analysis approach using a unique Nordic horse model. RESULTS: Pooled sequence data from three Nordic horse populations were used for FST analysis. After strict filtering, FST analysis yielded 580 differentiated regions for trotting racing ability. Candidate regions on equine chromosomes 7 and 11 contained the largest number of SNPs (n = 214 and 147, respectively). GO analyses identified multiple genes related to intelligence, energy metabolism, and skeletal development as potential candidate genes. However, only one candidate region for trotting racing ability overlapped a known racing ability QTL. CONCLUSIONS: Not unexpected for genomic investigations of complex traits, the current study identified hundreds of candidate regions contributing to trotting racing ability in the horse. Likely resulting from the cumulative effects of many variants across the genome, racing ability continues to demonstrate its polygenic nature with candidate regions implicating genes influencing both musculature and neurological development.


Assuntos
Cavalos/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Corrida , Animais , Cruzamento , Metabolismo Energético , Feminino , Genoma , Estudo de Associação Genômica Ampla , Cavalos/fisiologia , Inteligência , Masculino , Modelos Animais , Desenvolvimento Muscular , Análise de Sequência de DNA
5.
BMC Genet ; 19(1): 80, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30157760

RESUMO

BACKGROUND: Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. RESULTS: Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. CONCLUSIONS: Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted.


Assuntos
Metabolismo Energético/genética , Cavalos/genética , Aprendizagem , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Animais , Feminino , Estudo de Associação Genômica Ampla , Cavalos/metabolismo , Cavalos/fisiologia , Cavalos/psicologia , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...