Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 10(2): 122, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741924

RESUMO

We evaluated redundant and receptor-specific activities of TRADD, RIPK1, and FADD in RIPK3-expressing HeLa cells lacking expression of these proteins or any combination of two of these factors. We confirmed the opposing role of FADD in TNF- and TRAIL-induced necroptosis and observed an anti-necroptotic function of TRADD. RIPK1 and TRADD act in a redundant manner in TNF- but not TRAIL-induced apoptosis. Complementary, FADD proved to be sufficient for TRAIL- but not for TNF-induced apoptosis. TRADD and RIPK1, however, redundantly mediated proinflammatory signaling in response to TNF and TRAIL. FADD deficiency sensitized more efficiently for TNFR1-mediated necroptosis than caspase-8 deficiency pointing to a caspase-8 independent inhibitory activity of FADD on TNF-induced necroptosis. Based on these characteristics, we propose a model in which the death receptor-specific activities of TRADD, RIPK1, and FADD are traced back to their hierarchically different position in TNFR1- and TRAIL death receptor signaling.


Assuntos
Proteína de Domínio de Morte Associada a Fas/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Células HeLa , Humanos , NF-kappa B/metabolismo , Oligopeptídeos/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Transdução de Sinais/efeitos dos fármacos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
2.
Cell Death Dis ; 9(11): 1084, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30349023

RESUMO

TNF-like weak inducer of apoptosis (TWEAK) and inhibition of protein synthesis with cycloheximide (CHX) sensitize for poly(I:C)-induced cell death. Notably, although CHX preferentially enhanced poly(I:C)-induced apoptosis, TWEAK enhanced primarily poly(I:C)-induced necroptosis. Both sensitizers of poly(I:C)-induced cell death, however, showed no major effect on proinflammatory poly(I:C) signaling. Analysis of a panel of HeLa-RIPK3 variants lacking TRADD, RIPK1, FADD, or caspase-8 expression revealed furthermore similarities and differences in the way how poly(I:C)/TWEAK, TNF, and TRAIL utilize these molecules for signaling. RIPK1 turned out to be essential for poly(I:C)/TWEAK-induced caspase-8-mediated apoptosis but was dispensable for this response in TNF and TRAIL signaling. TRADD-RIPK1-double deficiency differentially affected poly(I:C)-triggered gene induction but abrogated gene induction by TNF completely. FADD deficiency abrogated TRAIL- but not TNF- and poly(I:C)-induced necroptosis, whereas TRADD elicited protective activity against all three death inducers. A general protective activity against poly(I:C)-, TRAIL-, and TNF-induced cell death was also observed in FLIPL and FLIPS transfectrants.


Assuntos
Apoptose/fisiologia , Citocina TWEAK/metabolismo , Necrose/metabolismo , Poli I-C/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cicloeximida/farmacologia , Proteína de Domínio de Morte Associada a Fas/metabolismo , Células HeLa , Humanos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína de Domínio de Morte Associada a Receptor de TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
3.
J Immunol ; 191(5): 2308-18, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23918987

RESUMO

We found recently that TNF-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible-14 (Fn14) by virtue of their strong capability to reduce the freely available cytoplasmic pool of TNFR-associated factor (TRAF)2 and cellular inhibitors of apoptosis (cIAPs) antagonize the functions of these molecules in TNFR1 signaling, resulting in sensitization for apoptosis and inhibition of classical NF-κB signaling. In this study, we demonstrate that priming of cells with TWEAK also interferes with activation of the classical NF-κB pathway by CD40. Likewise, there was strong inhibition of CD40 ligand (CD40L)-induced activation of MAPKs in TWEAK-primed cells. FACS analysis and CD40L binding studies revealed unchanged CD40 expression and normal CD40L-CD40 interaction in TWEAK-primed cells. CD40L immunoprecipitates, however, showed severely reduced amounts of CD40 and CD40-associated proteins, indicating impaired formation or reduced stability of CD40L-CD40 signaling complexes. The previously described inhibitory effect of TWEAK on TNFR1 signaling has been traced back to reduced activity of the TNFR1-associated TRAF2-cIAP1/2 ubiquitinase complex and did not affect the stability of the immunoprecipitable TNFR1 receptor complex. Thus, the inhibitory effect of TWEAK on CD40 signaling must be based at least partly on other mechanisms. In line with this, signaling by the CD40-related TRAF2-interacting receptor TNFR2 was also attenuated but still immunoprecipitable in TWEAK-primed cells. Collectively, we show that Fn14 activation by soluble TWEAK impairs CD40L-CD40 signaling complex formation and inhibits CD40 signaling and thus identify the Fn14-TWEAK system as a potential novel regulator of CD40-related cellular functions.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/fisiologia , Fator 2 Associado a Receptor de TNF/metabolismo , Fatores de Necrose Tumoral/metabolismo , Western Blotting , Antígenos CD40/imunologia , Ligante de CD40/imunologia , Linhagem Celular , Citocina TWEAK , Citometria de Fluxo , Humanos , Imunoprecipitação , Microscopia Confocal , Receptores do Fator de Necrose Tumoral/imunologia , Fator 2 Associado a Receptor de TNF/imunologia , Receptor de TWEAK , Fatores de Necrose Tumoral/imunologia
4.
J Biol Chem ; 288(19): 13455-66, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23532848

RESUMO

BACKGROUND: Fn14 is a therapeutic target in various diseases. RESULTS: Anti-Fn14 antibodies activate the alternative NFκB pathway but not other Fn14-related activities induced by soluble or membrane-bound TWEAK. FcγR-bound anti-Fn14 antibodies, however, activate the full spectrum of Fn14-associated activities. CONCLUSION: Anti-Fn14 antibodies elicit agonistic activities differing from those of the natural Fn14 ligand TWEAK. SIGNIFICANCE: These findings influence the rationale of designing Fn14-targeted therapies. The Fn14-specific monoclonal antibodies PDL192 and P4A8, which are under consideration in clinical trials, showed no agonistic activity with respect to IL8 production and cell death induction. However, oligomerization with protein G or binding to Fcγ receptors converted both anti-Fn14 antibodies into potent agonists. TNF-like weak inducer of apoptosis (TWEAK), the ligand of Fn14, occurs naturally in two forms with partly different signaling capabilities, as a membrane-bound ligand and as a soluble trimeric molecule. Although membrane TWEAK strongly triggers all Fn14-associated pathways, soluble TWEAK predominately triggers the alternative nuclear factor κB (NFκB) pathway and enhances TNF-induced cell death but has only a poor effect on the classical NFκB pathway and chemokine production. Thus, the oligomerized and FcγR-bound anti-Fn14 mAbs mimicked the activity of membrane TWEAK. Notably, both anti-Fn14 antibodies significantly triggered p100 processing, the hallmark of the alternative NFκB pathway, and therefore resembled soluble TWEAK. In contrast to the latter, however, the anti-Fn14s showed no effect on TNF receptor 1-induced cell death and P4A8 even blocked the corresponding TWEAK response. Thus, we showed that Fn14 antibodies display an alternative NFκB pathway-specific agonistic activity but fail to phenocopy other activities of soluble TWEAK, whereas oligomerized or FcγR-bound Fn14 antibodies fully mimic the activity of membrane TWEAK. In view of the trivalent nature of the TWEAK-Fn14 interaction, this suggests that the alternative NFκB pathway is uniquely responsive already to Fn14 dimerization enabling antibodies to elicit an unnatural response pattern distinct from that of the naturally occurring Fn14 ligands.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais/farmacologia , Receptores do Fator de Necrose Tumoral/imunologia , Transdução de Sinais/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais Humanizados/química , Proteínas de Bactérias/química , Linhagem Celular Tumoral , Citocina TWEAK , Endonucleases , Células HEK293 , Humanos , Interleucina-8/biossíntese , Macaca fascicularis , Camundongos , Mutagênese Sítio-Dirigida , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Multimerização Proteica , Receptores de IgG/agonistas , Receptores de IgG/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa/fisiologia , Fatores de Necrose Tumoral/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...