Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Emerg Microbes Infect ; 13(1): 2294860, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38165394

RESUMO

COVID-19 remains a major public health concern. Monoclonal antibodies have received emergency use authorization (EUA) for pre-exposure prophylaxis against COVID-19 among high-risk groups for treatment of mild to moderate COVID-19. In addition to recombinant biologics, engineered synthetic DNA-encoded antibodies (DMAb) are an important strategy for direct in vivo delivery of protective mAb. A DMAb cocktail was synthetically engineered to encode the immunoglobulin heavy and light chains of two different two different Fc-engineered anti-SARS-CoV-2 antibodies. The DMAbs were designed to enhance in vivo expression and delivered intramuscularly to cynomolgus and rhesus macaques with a modified in vivo delivery regimen. Serum levels were detected in macaques, along with specific binding to SARS-CoV-2 spike receptor binding domain protein and neutralization of multiple SARS-CoV-2 variants of concern in pseudovirus and authentic live virus assays. Prophylactic administration was protective in rhesus macaques against signs of SARS-CoV-2 (USA-WA1/2020) associated disease in the lungs. Overall, the data support further study of DNA-encoded antibodies as an additional delivery mode for prevention of COVID-19 severe disease. These data have implications for human translation of gene-encoded mAbs for emerging infectious diseases and low dose mAb delivery against COVID-19.


Assuntos
COVID-19 , Profilaxia Pré-Exposição , Animais , Macaca mulatta , COVID-19/prevenção & controle , SARS-CoV-2/genética , Anticorpos Antivirais , Anticorpos Monoclonais , Macaca fascicularis , DNA , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
2.
MAbs ; 15(1): 2152526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36476037

RESUMO

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Camundongos , Humanos , SARS-CoV-2/genética , Pandemias , Anticorpos Neutralizantes
3.
Nat Commun ; 13(1): 5886, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202799

RESUMO

Monoclonal antibody therapy has played an important role against SARS-CoV-2. Strategies to deliver functional, antibody-based therapeutics with improved in vivo durability are needed to supplement current efforts and reach underserved populations. Here, we compare recombinant mAbs COV2-2196 and COV2-2130, which compromise clinical cocktail Tixagevimab/Cilgavimab, with optimized nucleic acid-launched forms. Functional profiling of in vivo-expressed, DNA-encoded monoclonal antibodies (DMAbs) demonstrated similar specificity, broad antiviral potency and equivalent protective efficacy in multiple animal challenge models of SARS-CoV-2 prophylaxis compared to protein delivery. In PK studies, DNA-delivery drove significant serum antibody titers that were better maintained compared to protein administration. Furthermore, cryo-EM studies performed on serum-derived DMAbs provide the first high-resolution visualization of in vivo-launched antibodies, revealing new interactions that may promote cooperative binding to trimeric antigen and broad activity against VoC including Omicron lineages. These data support the further study of DMAb technology in the development and delivery of valuable biologics.


Assuntos
Produtos Biológicos , COVID-19 , Ácidos Nucleicos , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/prevenção & controle , DNA , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética
4.
Microbiol Spectr ; 10(5): e0103422, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-35993765

RESUMO

AZD7442, a combination of two long-acting monoclonal antibodies (tixagevimab [AZD8895] and cilgavimab [AZD1061]), has been authorized for the prevention and treatment of coronavirus disease 2019 (COVID-19). The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants requires methods capable of quickly characterizing resistance to AZD7442. To support AZD7442 resistance monitoring, a biolayer interferometry (BLI) assay was developed to screen the binding of tixagevimab and cilgavimab to SARS-CoV-2 spike proteins to reduce the number of viral variants for neutralization susceptibility verification. Six spike variants were chosen to assess the assay's performance: four with decreased affinity for tixagevimab (F486S:D614G and F486W:D614G proteins) or cilgavimab (S494L:D614G and K444R:D614G proteins) and two reference proteins (wild-type HexaPro and D614G protein). Equilibrium dissociation constant (KD) values from each spike protein were used to determine shifts in binding affinity. The assay's precision, range, linearity, and limits of quantitation were established. Qualification acceptance criteria determined whether the assay was fit for purpose. By bypassing protein purification, the BLI assay provided increased screening throughput. Although limited correlation between pseudotype neutralization and BLI data (50% inhibitory concentration versus KD) was observed for full immunoglobulins (IgGs), the correlations for antibody fragments (Fabs) were stronger and reflected a better comparison of antibody binding kinetics with neutralization potency. Therefore, despite strong assay performance characteristics, the use of full IgGs limited the screening utility of the assay; however, the Fab approach warrants further exploration as a rapid, high-throughput variant-screening method for future resistance-monitoring programs. IMPORTANCE SARS-CoV-2 variants harbor multiple substitutions in their spike trimers, potentially leading to breakthrough infections and clinical resistance to immune therapies. For this reason, a BLI assay was developed and qualified to evaluate the reliability of screening SARS-CoV-2 spike trimer variants against anti-SARS-CoV-2 monoclonal antibodies (MAbs) tixagevimab and cilgavimab, the components of AZD7442, prior to in vitro pseudovirus neutralization susceptibility verification testing. The assay bypasses protein purification with rapid assessment of the binding affinity of each MAb for each recombinant protein, potentially providing an efficient preliminary selection step, thus allowing a reduced testing burden in the more technically complex viral neutralization assays. Despite precise and specific measures, an avidity effect associated with MAb binding to the trimer confounded correlation with neutralization potency, negating the assay's utility as a surrogate for neutralizing antibody potency. Improved correlation with Fabs suggests that assay optimization could overcome any avidity limitation, warranting further exploration to support future resistance-monitoring programs.


Assuntos
Tratamento Farmacológico da COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/genética , Reprodutibilidade dos Testes , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais , Interferometria , Fragmentos de Imunoglobulinas , Proteínas Recombinantes
5.
Nat Commun ; 13(1): 3824, 2022 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-35780162

RESUMO

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes , Anticorpos Antivirais/uso terapêutico , Combinação de Medicamentos , Humanos , Glicoproteínas de Membrana , Camundongos , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
6.
Sci Transl Med ; 14(635): eabl8124, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35076282

RESUMO

Despite the success of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, there remains a need for more prevention and treatment options for individuals remaining at risk of coronavirus disease 2019 (COVID-19). Monoclonal antibodies (mAbs) against the viral spike protein have potential to both prevent and treat COVID-19 and reduce the risk of severe disease and death. Here, we describe AZD7442, a combination of two mAbs, AZD8895 (tixagevimab) and AZD1061 (cilgavimab), that simultaneously bind to distinct, nonoverlapping epitopes on the spike protein receptor binding domain to neutralize SARS-CoV-2. Initially isolated from individuals with prior SARS-CoV-2 infection, the two mAbs were designed to extend their half-lives and reduce effector functions. The AZD7442 mAbs individually prevent the spike protein from binding to angiotensin-converting enzyme 2 receptor, blocking virus cell entry, and neutralize all tested SARS-CoV-2 variants of concern. In a nonhuman primate model of SARS-CoV-2 infection, prophylactic AZD7442 administration prevented infection, whereas therapeutic administration accelerated virus clearance from the lung. In an ongoing phase 1 study in healthy participants (NCT04507256), a 300-mg intramuscular injection of AZD7442 provided SARS-CoV-2 serum geometric mean neutralizing titers greater than 10-fold above those of convalescent serum for at least 3 months, which remained threefold above those of convalescent serum at 9 months after AZD7442 administration. About 1 to 2% of serum AZD7442 was detected in nasal mucosa, a site of SARS-CoV-2 infection. Extrapolation of the time course of serum AZD7442 concentration suggests AZD7442 may provide up to 12 months of protection and benefit individuals at high-risk of COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/terapia , Combinação de Medicamentos , Meia-Vida , Humanos , Imunização Passiva , Primatas , Glicoproteína da Espícula de Coronavírus , Soroterapia para COVID-19
7.
Commun Biol ; 4(1): 1048, 2021 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-34497355

RESUMO

In a biologic therapeutic landscape that requires versatility in targeting specificity, valency and half-life modulation, the monomeric Fc fusion platform holds exciting potential for the creation of a class of monovalent protein therapeutics that includes fusion proteins and bispecific targeting molecules. Here we report a structure-guided approach to engineer monomeric Fc molecules to adapt multiple versions of half-life extension modifications. Co-crystal structures of these monomeric Fc variants with Fc neonatal receptor (FcRn) shed light into the binding interactions that could serve as a guide for engineering the half-life of antibody Fc fragments. These engineered monomeric Fc molecules also enabled the generation of a novel monovalent bispecific molecular design, which translated the FcRn binding enhancement to improvement of in vivo serum half-life.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Fragmentos Fc das Imunoglobulinas/metabolismo , Receptores Fc/metabolismo , Animais , Meia-Vida , Antígenos de Histocompatibilidade Classe I/farmacologia , Humanos , Fragmentos Fc das Imunoglobulinas/farmacologia , Camundongos , Camundongos Transgênicos , Engenharia de Proteínas
8.
Sci Rep ; 10(1): 17257, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057063

RESUMO

Neuregulin protein 1 (NRG1) is a large (> 60-amino-acid) natural peptide ligand for the ErbB protein family members HER3 and HER4. We developed an agonistic antibody modality, termed antibody ligand mimetics (ALM), by incorporating complex ligand agonists such as NRG1 into an antibody scaffold. We optimized the linker and ligand length to achieve native ligand activity in HEK293 cells and cardiomyocytes derived from induced pluripotent stem cells (iPSCs) and used a monomeric Fc-ligand fusion platform to steer the ligand specificity toward HER4-dominant agonism. With the help of selectivity engineering, these enhanced ALM molecules can provide an antibody scaffold with increased receptor specificity and the potential to greatly improve the pharmacokinetics, stability, and downstream developability profiles from the natural ligand approach. This ligand mimetic design and optimization approach can be expanded to apply to other cardiovascular disease targets and emerging therapeutic areas, providing differentiated drug molecules with increased specificity and extended half-life.


Assuntos
Anticorpos Monoclonais/química , Neuregulina-1/química , Receptor ErbB-4/agonistas , Anticorpos Monoclonais/metabolismo , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/química , Células-Tronco Pluripotentes Induzidas/metabolismo , Cinética , Ligantes , Miócitos Cardíacos/química , Miócitos Cardíacos/metabolismo , Neuregulina-1/metabolismo , Ligação Proteica , Receptor ErbB-4/metabolismo , Transdução de Sinais
9.
J Am Heart Assoc ; 8(24): e013465, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31818212

RESUMO

Background Heart failure is one of the leading causes of death in Western countries, and there is a need for new therapeutic approaches. Relaxin-2 is a peptide hormone that mediates pleiotropic cardiovascular effects, including antifibrotic, angiogenic, vasodilatory, antiapoptotic, and anti-inflammatory effects in vitro and in vivo. Methods and Results We developed RELAX10, a fusion protein composed of human relaxin-2 hormone and the Fc of a human antibody, to test the hypothesis that extended exposure of the relaxin-2 peptide could reduce cardiac hypertrophy and fibrosis. RELAX10 demonstrated the same specificity and similar in vitro activity as the relaxin-2 peptide. The terminal half-life of RELAX10 was 7 days in mouse and 3.75 days in rat after subcutaneous administration. We evaluated whether treatment with RELAX10 could prevent and reverse isoproterenol-induced cardiac hypertrophy and fibrosis in mice. Isoproterenol administration in mice resulted in increased cardiac hypertrophy and fibrosis compared with vehicle. Coadministration with RELAX10 significantly attenuated the cardiac hypertrophy and fibrosis compared with untreated animals. Isoproterenol administration significantly increased transforming growth factor ß1 (TGF-ß1)-induced fibrotic signaling, which was attenuated by RELAX10. We found that RELAX10 also significantly increased protein kinase B/endothelial NO synthase signaling and protein S-nitrosylation. In the reversal study, RELAX10-treated animals showed significantly reduced cardiac hypertrophy and collagen levels. Conclusions These findings support a potential role for RELAX10 in the treatment of heart failure.


Assuntos
Cardiomegalia/tratamento farmacológico , Miocárdio/patologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/prevenção & controle , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Fibrose/prevenção & controle , Isoproterenol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
PLoS Comput Biol ; 15(5): e1006980, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31042706

RESUMO

Antibodies are an important class of therapeutics that have significant clinical impact for the treatment of severe diseases. Computational tools to support antibody drug discovery have been developing at an increasing rate over the last decade and typically rely upon a predetermined co-crystal structure of the antibody bound to the antigen for structural predictions. Here, we show an example of successful in silico affinity maturation of a hybridoma derived antibody, AB1, using just a homology model of the antibody fragment variable region and a protein-protein docking model of the AB1 antibody bound to the antigen, murine CCL20 (muCCL20). In silico affinity maturation, together with alanine scanning, has allowed us to fine-tune the protein-protein docking model to subsequently enable the identification of two single-point mutations that increase the affinity of AB1 for muCCL20. To our knowledge, this is one of the first examples of the use of homology modelling and protein docking for affinity maturation and represents an approach that can be widely deployed.


Assuntos
Afinidade de Anticorpos/fisiologia , Biologia Computacional/métodos , Sequência de Aminoácidos , Animais , Anticorpos/química , Quimiocina CCL20 , Simulação por Computador , Desenho de Fármacos , Região Variável de Imunoglobulina , Camundongos , Modelos Moleculares , Ligação Proteica , Conformação Proteica
11.
MAbs ; 11(3): 500-515, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30835621

RESUMO

Most strategies used to prepare homogeneous site-specific antibody-drug conjugates (ADCs) result in ADCs with a drug-to-antibody ratio (DAR) of two. Here, we report a disulfide re-bridging strategy to prepare homogeneous ADCs with DAR of one using a dual-maleimide pyrrolobenzodiazepine (PBD) dimer (SG3710) and an engineered antibody (Flexmab), which has only one intrachain disulfide bridge at the hinge. We demonstrate that SG3710 efficiently re-bridge a Flexmab targeting human epidermal growth factor receptor 2 (HER2), and the resulting ADC was highly resistant to payload loss in serum and exhibited potent anti-tumor activity in a HER2-positive gastric carcinoma xenograft model. Moreover, this ADC was tolerated in rats at twice the dose compared to a site-specific ADC with DAR of two prepared using a single-maleimide PBD dimer (SG3249). Flexmab technologies, in combination with SG3710, provide a platform for generating site-specific homogenous PBD-based ADCs with DAR of one, which have improved biophysical properties and tolerability compared to conventional site-specific PBD-based ADCs with DAR of two.


Assuntos
Antineoplásicos , Benzodiazepinas/química , Imunoconjugados , Pirróis/química , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Gástricas/tratamento farmacológico , Trastuzumab , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Feminino , Humanos , Imunoconjugados/química , Imunoconjugados/farmacologia , Células MCF-7 , Camundongos Nus , Ratos , Receptor ErbB-2/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Trastuzumab/química , Trastuzumab/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS One ; 14(1): e0211236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682117

RESUMO

Interleukin-21 (IL-21), a member of the common cytokine receptor γ chain (γc) family, is secreted by CD4+ T cells and natural killer T cells and induces effector function through interactions with the IL-21 receptor (IL-21R)/γc complex expressed on both immune and non-immune cells. Numerous studies suggest that IL-21 plays a significant role in autoimmune disorders. Therapeutic intervention to disrupt the IL-21/IL-21R/γc interaction and inhibit subsequent downstream signal transduction could offer a treatment paradigm for these diseases. Potent neutralizing antibodies reported in the literature were generated after extensive immunizations with human IL-21 alone and in combination with various adjuvants. To circumvent the laborious method of antibody generation while targeting a conserved functional epitope, we designed a novel alternating-antigen immunization strategy utilizing both human and cynomolgus monkey (cyno) IL-21. Despite the high degree of homology between human and cyno IL-21, our alternating-immunization strategy elicited higher antibody titers and more potent neutralizing hybridomas in mice than did the immunization with human IL-21 antigen alone. The lead hybridoma clone was humanized by grafting the murine complementarity-determining regions onto human germline framework templates, using a unique rational design. The final humanized and engineered antibody, MEDI7169, encodes only one murine residue at the variable heavy/light-chain interface, retains the sub-picomolar affinity for IL-21, specifically inhibits IL-21/IL-21R-mediated signaling events and is currently under clinical development as a potential therapeutic agent for autoimmune diseases. This study provides experimental evidence of the immune system's potential to recognize and respond to shared epitopes of antigens from distinct species, and presents a generally applicable, novel method for the rapid generation of exceptional therapeutic antibodies using the hybridoma platform.


Assuntos
Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Neutralizantes/metabolismo , Interleucinas/imunologia , Macaca fascicularis/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Humanos , Hibridomas/imunologia , Imunização , Camundongos
13.
Mol Pharm ; 15(12): 5697-5710, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30395473

RESUMO

Monoclonal antibodies (mAbs) are complex molecular structures. They are often prone to development challenges particularly at high concentrations due to undesired solution properties such as reversible self-association, high viscosity, and liquid-liquid phase separation. In addition to formulation optimization, applying protein engineering can provide an alternative mitigation strategy. Protein engineering during the discovery phase can provide great benefits to optimize molecular properties, resulting in improved developability profiles. Here, we present a case study utilizing complementary analytical and predictive in silico methods. We have systematically identified and reengineered problematic residues responsible for the self-association of a model mAb, driven by a complex combination of hydrophobic and electrostatic interactions. Noteworthy findings include a more dominant contribution of hydrophobic interactions to self-association and potential feasibility of mutations in the CDR regions to mitigate self-association. The engineered mutation panel enabled us to assess potential correlations among commonly utilized developability screening assays, including affinity capture self-interaction nanospectroscopy (AC-SINS), dynamic light scattering (DLS), and apparent solubility by PEG-precipitation. In addition, we evaluated the correlations between experimental measurements and computational predictions. CamSol, an in silico computational tool that accounts for complex molecular interactions and neighboring hotspots, was found to be an effective screening tool. Our work led to reengineered mAb variants, better suited for high-concentration liquid formulation development. The engineered mAbs exhibited enhanced in vitro and simulated in vivo solubility and reduced self-association propensity, while maintaining binding affinity and thermal stability.


Assuntos
Anticorpos Monoclonais/genética , Desenvolvimento de Medicamentos , Mutagênese Sítio-Dirigida , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Disponibilidade Biológica , Química Farmacêutica , Clonagem Molecular , Simulação por Computador , Estabilidade de Medicamentos , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Modelos Químicos , Mutação , Solubilidade , Eletricidade Estática , Viscosidade
14.
J Control Release ; 279: 126-135, 2018 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-29653224

RESUMO

The accumulation, dissemination and clearance of monoclonal antibody-based therapeutics or imaging reagents targeting tumor associated antigens is governed by several factors including affinity, size, charge, and valency. Tumor targeting antibody fragments have distinct advantages over intact monoclonal antibodies such as enhanced penetration within the tumor and rapid accumulation but are subject to rapid clearance. Polyethylene glycol (PEG)-modified antibody fragments can provide a way to balance tumor penetration and accumulation with improved serum persistence. In this study, we use a diabody, the dimeric antibody fragment, targeting the 5T4 antigen to assess the impact of PEGs of distinct size and shape on tumor accumulation and pharmacokinetics (PK). We show that PEG-modified diabodies improved the PK of the parental diabody from a half-life of 40 min to over 40 h for the higher molecular weight PEG conjugated diabodies. This improvement correlates with the increasing hydrodynamic size of pegylated diabodies, and can serve as a better predictor of the PK behavior of pegylated molecules than molecular weight alone. Tumor uptake profiles determined by quantitative PET imaging differed significantly based on PEG size and shape with diabody-PEG5K showing peak accumulation early on, but with the larger diabody-PEG20K showing better sustained tumor uptake at later time points. In addition, we demonstrate that a diabody-PEG20K-B with a hydrodynamic radius (Rh) of 6 nm had superior tumor uptake than the larger diabody-PEG40K-B with Rh of 12 nm, indicating that beyond 6 nm, larger pegylated diabodies have a slower tumor uptake rate while having comparable clearance kinetics. Our data demonstrate that pegylated diabodies with Rh of ~6 nm have an optimal size and PK profile for tumor uptake. Understanding the impact of pegylation on PK and tumor uptake could facilitate the development of pegylated diabodies as therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos , Fragmentos de Imunoglobulinas/administração & dosagem , Neoplasias/metabolismo , Polietilenoglicóis/química , Animais , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Meia-Vida , Humanos , Hidrodinâmica , Fragmentos de Imunoglobulinas/química , Fragmentos de Imunoglobulinas/metabolismo , Camundongos , Camundongos Nus , Peso Molecular , Tomografia por Emissão de Pósitrons , Distribuição Tecidual
15.
J Biol Chem ; 293(22): 8439-8448, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29669810

RESUMO

Pathways of human epidermal growth factor (EGF) receptors are activated upon ligand-dependent or -independent homo- or heterodimerization and their subsequent transphosphorylation. Overexpression of these receptors positively correlates with transphosphorylation rates and increased tumor growth rates. MEDI4276, an anti-human epidermal growth factor receptor 2 (HER2) biparatopic antibody-drug conjugate, has two paratopes within each antibody arm. One, 39S, is aiming at the HER2 site involved in receptor dimerization and the second, single chain fragment (scFv), mimicking trastuzumab. Here we present the cocrystal structure of the 39S Fab-HER2 complex and, along with biophysical and functional assays, determine the corresponding epitope of MEDI4276 and its underlying mechanism of action. Our results reveal that MEDI4276's uniqueness is based first on the ability of its 39S paratope to block HER2 homo- or heterodimerization and second on its ability to cluster the receptors on the surface of receptor-overexpressing cells.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Multimerização Proteica , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Sequência de Aminoácidos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cristalografia por Raios X , Feminino , Humanos , Modelos Moleculares , Fosforilação , Conformação Proteica , Homologia de Sequência , Células Tumorais Cultivadas
16.
J Biol Chem ; 293(3): 941-952, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29180448

RESUMO

Clostridium difficile infection is the leading cause of hospital-acquired diarrhea and is mediated by the actions of two toxins, TcdA and TcdB. The toxins perturb host cell function through a multistep process of receptor binding, endocytosis, low pH-induced pore formation, and the translocation and delivery of an N-terminal glucosyltransferase domain that inactivates host GTPases. Infection studies with isogenic strains having defined toxin deletions have established TcdB as an important target for therapeutic development. Monoclonal antibodies that neutralize TcdB function have been shown to protect against C. difficile infection in animal models and reduce recurrence in humans. Here, we report the mechanism of TcdB neutralization by PA41, a humanized monoclonal antibody capable of neutralizing TcdB from a diverse array of C. difficile strains. Through a combination of structural, biochemical, and cell functional studies, involving X-ray crystallography and EM, we show that PA41 recognizes a single, highly conserved epitope on the TcdB glucosyltransferase domain and blocks productive translocation and delivery of the enzymatic cargo into the host cell. Our study reveals a unique mechanism of C. difficile toxin neutralization by a monoclonal antibody, which involves targeting a process that is conserved across the large clostridial glucosylating toxins. The PA41 antibody described here provides a valuable tool for dissecting the mechanism of toxin pore formation and translocation across the endosomal membrane.


Assuntos
Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Enterotoxinas/metabolismo , Anticorpos Monoclonais/metabolismo , Toxinas Bacterianas/química , Células CACO-2 , Clostridioides difficile/enzimologia , Cristalografia por Raios X , Citosol/metabolismo , Enterotoxinas/química , Humanos , Concentração de Íons de Hidrogênio , Microscopia Eletrônica , Rubídio/química , Proteínas rac1 de Ligação ao GTP/química , Proteínas rac1 de Ligação ao GTP/metabolismo
17.
J Biol Chem ; 292(35): 14401-14412, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28705932

RESUMO

Clostridium difficile is a clinically significant pathogen that causes mild-to-severe (and often recurrent) colon infections. Disease symptoms stem from the activities of two large, multidomain toxins known as TcdA and TcdB. The toxins can bind, enter, and perturb host cell function through a multistep mechanism of receptor binding, endocytosis, pore formation, autoproteolysis, and glucosyltransferase-mediated modification of host substrates. Monoclonal antibodies that neutralize toxin activity provide a survival benefit in preclinical animal models and prevent recurrent infections in human clinical trials. However, the molecular mechanisms involved in these neutralizing activities are unclear. To this end, we performed structural studies on a neutralizing monoclonal antibody, PA50, a humanized mAb with both potent and broad-spectrum neutralizing activity, in complex with TcdA. Electron microscopy imaging and multiangle light-scattering analysis revealed that PA50 binds multiple sites on the TcdA C-terminal combined repetitive oligopeptides (CROPs) domain. A crystal structure of two PA50 Fabs bound to a segment of the TcdA CROPs helped define a conserved epitope that is distinct from previously identified carbohydrate-binding sites. Binding of TcdA to the host cell surface was directly blocked by either PA50 mAb or Fab and suggested that receptor blockade is the mechanism by which PA50 neutralizes TcdA. These findings highlight the importance of the CROPs C terminus in cell-surface binding and a role for neutralizing antibodies in defining structural features critical to a pathogen's mechanism of action. We conclude that PA50 protects host cells by blocking the binding of TcdA to cell surfaces.


Assuntos
Antibacterianos/metabolismo , Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/enzimologia , Enterócitos/metabolismo , Enterotoxinas/metabolismo , Glucosiltransferases/metabolismo , Modelos Moleculares , Sequência de Aminoácidos , Antibacterianos/química , Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/metabolismo , Anticorpos Neutralizantes/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Sítios de Ligação de Anticorpos , Células CACO-2 , Sequência Conservada , Cristalografia por Raios X , Enterócitos/efeitos dos fármacos , Enterotoxinas/química , Enterotoxinas/genética , Enterotoxinas/toxicidade , Mapeamento de Epitopos , Glucosiltransferases/química , Glucosiltransferases/genética , Glucosiltransferases/toxicidade , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/toxicidade , Sequências Repetitivas de Aminoácidos
18.
PLoS One ; 11(8): e0160345, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27479095

RESUMO

The immunoglobulin Fc region is a homodimer consisted of two sets of CH2 and CH3 domains and has been exploited to generate two-arm protein fusions with high expression yields, simplified purification processes and extended serum half-life. However, attempts to generate one-arm fusion proteins with monomeric Fc, with one set of CH2 and CH3 domains, are often plagued with challenges such as weakened binding to FcRn or partial monomer formation. Here, we demonstrate the generation of a stable IgG4 Fc monomer with a unique combination of mutations at the CH3-CH3 interface using rational design combined with in vitro evolution methodologies. In addition to size-exclusion chromatography and analytical ultracentrifugation, we used multi-angle light scattering (MALS) to show that the engineered Fc monomer exhibits excellent monodispersity. Furthermore, crystal structure analysis (PDB ID: 5HVW) reveals monomeric properties supported by disrupted interactions at the CH3-CH3 interface. Monomeric Fc fusions with Fab or scFv achieved FcRn binding and serum half-life comparable to wildtype IgG. These results demonstrate that this monomeric IgG4 Fc is a promising therapeutic platform to extend the serum half-life of proteins in a monovalent format.


Assuntos
Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/metabolismo , Animais , Cromatografia em Gel , Cristalografia por Raios X , Difusão Dinâmica da Luz , Ensaio de Imunoadsorção Enzimática , Meia-Vida , Humanos , Fragmentos Fc das Imunoglobulinas/sangue , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/sangue , Imunoglobulina G/química , Imunoglobulina G/genética , Camundongos , Camundongos Transgênicos , Simulação de Dinâmica Molecular , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Ultracentrifugação
19.
MAbs ; 8(3): 454-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26854859

RESUMO

CD73 (ecto-5'-nucleotidase) has recently been established as a promising immuno-oncology target. Given its role in activating purinergic signaling pathways to elicit immune suppression, antagonizing CD73 (i.e., releasing the brake) offers a complimentary pathway to inducing anti-tumor immune responses. Here, we describe the mechanistic activity of a new clinical therapeutic, MEDI9447, a human monoclonal antibody that non-competitively inhibits CD73 activity. Epitope mapping, structural, and mechanistic studies revealed that MEDI9447 antagonizes CD73 through dual mechanisms of inter-CD73 dimer crosslinking and/or steric blocking that prevent CD73 from adopting a catalytically active conformation. To our knowledge, this is the first report of an antibody that inhibits an enzyme's function through 2 distinct modes of action. These results provide a finely mapped epitope that can be targeted for selective, potent, and non-competitive inhibition of CD73, as well as establish a strategy for inhibiting enzymes that function in both membrane-bound and soluble states.


Assuntos
5'-Nucleotidase , Monofosfato de Adenosina , Anticorpos Monoclonais/química , Antineoplásicos/química , Inibidores Enzimáticos/química , 5'-Nucleotidase/antagonistas & inibidores , 5'-Nucleotidase/química , Monofosfato de Adenosina/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/química , Humanos , Hidrólise
20.
Carbohydr Polym ; 133: 8-18, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26344248

RESUMO

In this work, we produced gelatin films containing different concentrations of galactomannan by casting solutions. The films were crosslinked by immersion in 30mM solution of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC). The crosslinking of gelatin-containing films was confirmed by the reduction of free amine band intensity (3400-3200cm(-1)) in the GEL IR, as well as by the evaluation of its behavior when immersed in phosphate-buffer solution. The crosslinking of galactomannan film was confirmed by the formation of new ether bonds, as observed by increasing intensity of the band at 1148cm(-1), and the reduction of OH band intensity (3600-3200cm(-1)). The presence of galactomannan and the crosslinking mediated by EDC were responsible to improve elasticity in the gelatin-based films. The samples did not show cytotoxicity during 24h or 48h. In addition, rat mesenchymal stem cells adhered to the films regardless of galactomannan concentration. The results indicated that the gelatin/galactomannan films are potential biomaterials for use as scaffolds for tissue engineering.


Assuntos
Materiais Biocompatíveis/química , Gelatina/química , Mananas/química , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Materiais Biocompatíveis/farmacologia , Carbodi-Imidas/química , Sobrevivência Celular/efeitos dos fármacos , Galactose/análogos & derivados , Fenômenos Mecânicos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...