Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 23(2)2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36061313

RESUMO

The Genomics Education Partnership (GEP) engages students in a course-based undergraduate research experience (CURE). To better understand the student attributes that support success in this CURE, we asked students about their attitudes using previously published scales that measure epistemic beliefs about work and science, interest in science, and grit. We found, in general, that the attitudes students bring with them into the classroom contribute to two outcome measures, namely, learning as assessed by a pre- and postquiz and perceived self-reported benefits. While the GEP CURE produces positive outcomes overall, the students with more positive attitudes toward science, particularly with respect to epistemic beliefs, showed greater gains. The findings indicate the importance of a student's epistemic beliefs to achieving positive learning outcomes.

2.
J Microbiol Biol Educ ; 22(3)2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34970386

RESUMO

Developing effective assessments of student learning is a challenging task for faculty and even more difficult for those in emerging disciplines that lack readily available resources and standards. With the power of technology-enhanced education and accessible digital learning platforms, instructors are also looking for assessments that work in an online format. This article will be useful for all teachers, but especially for entry-level instructors, in addition to more mature instructors who are looking to become more well versed in assessment, who seek a succinct summary of assessment types to springboard the integration of new forms of assessment of student learning into their courses. In this paper, ten assessment types, all appropriate for face-to-face, blended, and online modalities, are discussed. The assessments are mapped to a set of bioinformatics core competencies with examples of how they have been used to assess student learning. Although bioinformatics is used as the focus of the assessment types, the question types are relevant to many disciplines.

3.
PLoS One ; 16(9): e0257404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34506617

RESUMO

As powerful computational tools and 'big data' transform the biological sciences, bioinformatics training is becoming necessary to prepare the next generation of life scientists. Furthermore, because the tools and resources employed in bioinformatics are constantly evolving, bioinformatics learning materials must be continuously improved. In addition, these learning materials need to move beyond today's typical step-by-step guides to promote deeper conceptual understanding by students. One of the goals of the Network for Integrating Bioinformatics into Life Sciences Education (NIBSLE) is to create, curate, disseminate, and assess appropriate open-access bioinformatics learning resources. Here we describe the evolution, integration, and assessment of a learning resource that explores essential concepts of biological sequence similarity. Pre/post student assessment data from diverse life science courses show significant learning gains. These results indicate that the learning resource is a beneficial educational product for the integration of bioinformatics across curricula.


Assuntos
Biologia Computacional/métodos , Educação a Distância , Aprendizagem , Big Data , Disciplinas das Ciências Biológicas/educação , Simulação por Computador , Currículo , Escolaridade , Humanos , Modelos Lineares , Planejamento Social , Estudantes
4.
Biochem Mol Biol Educ ; 48(4): 381-390, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32585745

RESUMO

While it is essential for life science students to be trained in modern techniques and approaches, rapidly developing, interdisciplinary fields such as bioinformatics present distinct challenges to undergraduate educators. In particular, many educators lack training in new fields, and high-quality teaching and learning materials may be sparse. To address this challenge with respect to bioinformatics, the Network for the Integration of Bioinformatics into Life Science Education (NIBLSE), in partnership with Quantitative Undergraduate Biology Education and Synthesis (QUBES), developed incubators, a novel collaborative process for the development of open educational resources (OER). Incubators are short-term, online communities that refine unpublished teaching lessons into more polished and widely usable learning resources. The resulting products are published and made freely available in the NIBLSE Resource Collection, providing recognition of scholarly work by incubator participants. In addition to producing accessible, high-quality resources, incubators also provide opportunities for faculty development. Because participants are intentionally chosen to represent a range of expertise in bioinformatics and pedagogy, incubators also build professional connections among educators with diverse backgrounds and perspectives and promote the discussion of practical issues involved in deploying a resource in the classroom. Here we describe the incubator process and provide examples of beneficial outcomes. Our experience indicates that incubators are a low cost, short-term, flexible method for the development of OERs and professional community that could be adapted to a variety of disciplinary and pedagogical contexts.


Assuntos
Disciplinas das Ciências Biológicas/educação , Redes Comunitárias , Biologia Computacional/educação , Currículo/normas , Aprendizagem , Ensino/normas , Humanos , Estudantes
5.
Artigo em Inglês | MEDLINE | ID: mdl-32148609

RESUMO

A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students' learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our "formative frustration" hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of "formative frustration" is an important aspect for a successful CURE.

6.
PLoS One ; 14(11): e0224288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31738797

RESUMO

Bioinformatics, a discipline that combines aspects of biology, statistics, mathematics, and computer science, is becoming increasingly important for biological research. However, bioinformatics instruction is not yet generally integrated into undergraduate life sciences curricula. To understand why we studied how bioinformatics is being included in biology education in the US by conducting a nationwide survey of faculty at two- and four-year institutions. The survey asked several open-ended questions that probed barriers to integration, the answers to which were analyzed using a mixed-methods approach. The barrier most frequently reported by the 1,260 respondents was lack of faculty expertise/training, but other deterrents-lack of student interest, overly-full curricula, and lack of student preparation-were also common. Interestingly, the barriers faculty face depended strongly on whether they are members of an underrepresented group and on the Carnegie Classification of their home institution. We were surprised to discover that the cohort of faculty who were awarded their terminal degree most recently reported the most preparation in bioinformatics but teach it at the lowest rate.


Assuntos
Biologia/educação , Biologia Computacional/educação , Currículo , Docentes/estatística & dados numéricos , Feminino , Humanos , Masculino , Motivação , Estudantes/psicologia , Inquéritos e Questionários/estatística & dados numéricos , Estados Unidos
7.
Artigo em Inglês | MEDLINE | ID: mdl-31160933

RESUMO

Bioinformatics brings together biology, mathematics, statistics, and computer science to analyze biological sequence information. Anyone with a computer, access to the Internet, and basic training in this field can contribute to genomics research. Yet many biology faculty feel they lack training in the use of bioinformatics tools and therefore include little bioinformatics content in their courses. To overcome this challenge, the Genome Solver Project was created to empower undergraduate faculty by offering training and resources for creating hands-on bioinformatics course materials. In this study, we show the results of one survey completed directly after the workshop and a further follow-up survey to gain insight into the impact the workshop had on faculty willingness to include bioinformatics content in their courses and what challenges they still faced. We also measured student performance at five different institutions using a 20-question multiple-choice quiz delivered before and after bioinformatics instruction. Data collected from 640 students at these five schools demonstrated student performance increased, suggesting that bioinformatics training workshops can be an effective means of encouraging faculty to engage in bioinformatics instruction and positively influence student learning.

8.
PLoS One ; 13(6): e0196878, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870542

RESUMO

Although bioinformatics is becoming increasingly central to research in the life sciences, bioinformatics skills and knowledge are not well integrated into undergraduate biology education. This curricular gap prevents biology students from harnessing the full potential of their education, limiting their career opportunities and slowing research innovation. To advance the integration of bioinformatics into life sciences education, a framework of core bioinformatics competencies is needed. To that end, we here report the results of a survey of biology faculty in the United States about teaching bioinformatics to undergraduate life scientists. Responses were received from 1,260 faculty representing institutions in all fifty states with a combined capacity to educate hundreds of thousands of students every year. Results indicate strong, widespread agreement that bioinformatics knowledge and skills are critical for undergraduate life scientists as well as considerable agreement about which skills are necessary. Perceptions of the importance of some skills varied with the respondent's degree of training, time since degree earned, and/or the Carnegie Classification of the respondent's institution. To assess which skills are currently being taught, we analyzed syllabi of courses with bioinformatics content submitted by survey respondents. Finally, we used the survey results, the analysis of the syllabi, and our collective research and teaching expertise to develop a set of bioinformatics core competencies for undergraduate biology students. These core competencies are intended to serve as a guide for institutions as they work to integrate bioinformatics into their life sciences curricula.


Assuntos
Biologia Computacional/educação , Competência Mental , Aprendizagem Baseada em Problemas , Adolescente , Adulto , Feminino , Humanos , Masculino , Estados Unidos
9.
PLoS Comput Biol ; 14(2): e1005772, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29390004

RESUMO

Bioinformatics is recognized as part of the essential knowledge base of numerous career paths in biomedical research and healthcare. However, there is little agreement in the field over what that knowledge entails or how best to provide it. These disagreements are compounded by the wide range of populations in need of bioinformatics training, with divergent prior backgrounds and intended application areas. The Curriculum Task Force of the International Society of Computational Biology (ISCB) Education Committee has sought to provide a framework for training needs and curricula in terms of a set of bioinformatics core competencies that cut across many user personas and training programs. The initial competencies developed based on surveys of employers and training programs have since been refined through a multiyear process of community engagement. This report describes the current status of the competencies and presents a series of use cases illustrating how they are being applied in diverse training contexts. These use cases are intended to demonstrate how others can make use of the competencies and engage in the process of their continuing refinement and application. The report concludes with a consideration of remaining challenges and future plans.


Assuntos
Biologia Computacional/educação , Currículo , Educação de Pós-Graduação , Biologia de Sistemas/educação , Comitês Consultivos , África , Algoritmos , Predisposição Genética para Doença , Illinois , New South Wales , Ohio , Pennsylvania , Software , Inquéritos e Questionários , Reino Unido , Universidades
10.
Small GTPases ; 9(5): 409-414, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-27763811

RESUMO

Macroautophagy, a highly conserved process in eukaryotic cells, is initiated in response to stress, especially nutrient starvation. Macroautophagy helps cells survive by engulfing proteins and organelles into an unusual double-membraned structure called the autophagosome, which then fuses with the lysosome. Upon degradation of the engulfed contents, the building blocks are recycled for synthesis of new macromolecules. Recent work has demonstrated that construction of the autophagosome requires a variety of small GTPases in variations of their normal roles in membrane traffic. In this Commentary, we review our own recent findings with respect to 2 different GTPases, Arl1, a member of the Arf/Arl/Sar family, and Ypt6, a member of the Rab family, in the yeast S. cerevisiae in light of other information from the literature and discuss future directions for further discerning the roles of small GTPases in autophagy.


Assuntos
Autofagia , GTP Fosfo-Hidrolases/metabolismo , Animais , GTP Fosfo-Hidrolases/química , Saccharomyces cerevisiae/enzimologia
11.
Am J Trop Med Hyg ; 96(1): 16-23, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-28077739

RESUMO

Global health education has been expanding rapidly and several universities have created an undergraduate major degree (bachelor's degree) in global heath or global health studies. Because there are currently no national guidelines for undergraduate degrees in global health, each of these programs was developed along individual lines. To guide the development of future global health majors, we conducted a systematic review of undergraduate majors in global health. We identified eight programs and invited program directors or representatives to a symposium at the Consortium of Universities for Global Health 2016 conference to review their existing undergraduate major in global health and to discuss lessons learned and recommendations for other colleges and universities seeking to develop undergraduate degrees in global health. We noted significant diversity among the existing programs in terms of required courses, international field experiences, and thesis research projects. In this review, we describe these global health programs, their student characteristics, as well as the key educational competencies, program requirements, and core global health courses. Based on program reviews and discussions, we identify seven recommendations for the development and expansion of an undergraduate major in global health and discuss issues that have arisen in the curricular development of these programs that warrant further exploration. As the field of global health education continues to expand, following these students after graduation will be essential to ensure that the degree programs in global health both meet student needs and launch students on viable career pathways.


Assuntos
Currículo/normas , Saúde Global , Avaliação de Programas e Projetos de Saúde , Universidades , Currículo/tendências , Humanos , Estados Unidos
12.
G3 (Bethesda) ; 7(2): 333-341, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27974437

RESUMO

In Saccharomyces cerevisiae, Arl1 and Ypt6, two small GTP-binding proteins that regulate membrane traffic in the secretory and endocytic pathways, are also necessary for autophagy. To gain information about potential partners of Arl1 and Ypt6 specifically in autophagy, we carried out a high copy number suppressor screen to identify genes that when overexpressed suppress the rapamycin sensitivity phenotype of arl1Δ and ypt6Δ strains at 37°. From the screen results, we selected COG4, SNX4, TAX4, IVY1, PEP3, SLT2, and ATG5, either membrane traffic or autophagy regulators, to further test whether they can suppress the specific autophagy defects of arl1Δ and ypt6Δ strains. As a result, we identified COG4, SNX4, and TAX4 to be specific suppressors for the arl1Δ strain, and IVY1 and ATG5 for the ypt6Δ strain. Through this screen, we were able to confirm several membrane traffic and autophagy regulators that have novel relationships with Arl1 and Ypt6 during autophagy.


Assuntos
Autofagia/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteína 5 Relacionada à Autofagia/genética , Proteínas de Transporte/genética , Endocitose/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Mutação , Transporte Proteico/genética
13.
G3 (Bethesda) ; 6(9): 2893-907, 2016 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-27449515

RESUMO

Candida glabrata is an important human fungal pathogen whose incidence continues to rise. Because many clinical isolates are resistant to azole drugs, the drugs of choice to treat such infections are members of the echinocandin family, although there are increasing reports of resistance to these drugs as well. In efforts to better understand the genetic changes that lead to altered responses to echinocandins, we screened a transposon-insertion library of mutants for strains to identify genes that are important for cellular responses to caspofungin, a member of this drug family. We identified 16 genes that, when disrupted, caused increased tolerance, and 48 genes that, when disrupted, caused increased sensitivity compared to the wild-type parental strain. Four of the genes identified as causing sensitivity are orthologs of Saccharomyces cerevisiae genes encoding proteins important for the cell wall integrity (CWI) pathway. In addition, several other genes are orthologs of the high affinity Ca(2+) uptake system (HACS) complex genes. We analyzed disruption mutants representing all 64 genes under 33 different conditions, including the presence of cell wall disrupting agents and other drugs, a variety of salts, increased temperature, and altered pH. Further, we generated knockout mutants in different genes within the CWI pathway and the HACS complex, and found that they too exhibited phenotypes consistent with defects in cell wall construction. Our results indicate that small molecules that inhibit the CWI pathway, or that the HACS complex, may be an important means of increasing the efficacy of caspofungin.


Assuntos
Antifúngicos/farmacologia , Candida glabrata/genética , Candidíase/genética , Parede Celular/genética , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Candida glabrata/efeitos dos fármacos , Candida glabrata/patogenicidade , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Caspofungina , Parede Celular/efeitos dos fármacos , Farmacorresistência Fúngica/genética , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Saccharomyces cerevisiae/genética
14.
Autophagy ; 12(10): 1721-1737, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27462928

RESUMO

Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.


Assuntos
Autofagia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagossomos/metabolismo , Complexo de Golgi/metabolismo , Modelos Biológicos , Mutação/genética , Transporte Proteico , Transdução de Sinais , Temperatura
17.
Helicobacter ; 21(3): 226-33, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26612095

RESUMO

BACKGROUND: The bacterium Helicobacter pylori is associated with ulcers and the development of gastric cancer. Several genes, including cytotoxin-associated gene A (CagA) and vacuolating cytotoxin A (VacA), are associated with increased gastric cancer risk. Some strains of H. pylori also contain sequences related to bacteriophage phiHP33; however, the significance of these phage-related sequences remains unknown. MATERIALS AND METHODS: We assessed the extent to which phiHP33-related sequences are present in 335 H. pylori strains using homology searches then mapped shared genes between phiHP33 and H. pylori strains onto an existing phylogeny. RESULTS: One hundred and twenty-one H. pylori strains contain phage orthologous sequences, and the presence of the phage-related sequences correlates with the presence of CagA and VacA. Mapping of the phage orthologs onto a phylogeny of H. pylori is consistent with the hypothesis that these genes were acquired by horizontal gene transfer. CONCLUSIONS: phiHP33 phage orthologous sequences might be of significance in understanding virulence of different H. pylori strains.


Assuntos
Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Bacteriófagos/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Neoplasias Gástricas/microbiologia , Úlcera Gástrica/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Filogenia , Fatores de Virulência/genética
19.
CBE Life Sci Educ ; 13(4): 711-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25452493

RESUMO

In their 2012 report, the President's Council of Advisors on Science and Technology advocated "replacing standard science laboratory courses with discovery-based research courses"-a challenging proposition that presents practical and pedagogical difficulties. In this paper, we describe our collective experiences working with the Genomics Education Partnership, a nationwide faculty consortium that aims to provide undergraduates with a research experience in genomics through a scheduled course (a classroom-based undergraduate research experience, or CURE). We examine the common barriers encountered in implementing a CURE, program elements of most value to faculty, ways in which a shared core support system can help, and the incentives for and rewards of establishing a CURE on our diverse campuses. While some of the barriers and rewards are specific to a research project utilizing a genomics approach, other lessons learned should be broadly applicable. We find that a central system that supports a shared investigation can mitigate some shortfalls in campus infrastructure (such as time for new curriculum development, availability of IT services) and provides collegial support for change. Our findings should be useful for designing similar supportive programs to facilitate change in the way we teach science for undergraduates.


Assuntos
Genômica/educação , Currículo , Modelos Educacionais , Desenvolvimento de Programas , Estados Unidos , Universidades
20.
Int J Mol Sci ; 15(10): 18084-101, 2014 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-25302616

RESUMO

Autophagy is a cellular degradation process that sequesters components into a double-membrane structure called the autophagosome, which then fuses with the lysosome or vacuole for hydrolysis and recycling of building blocks. Bulk phase autophagy, also known as macroautophagy, controlled by specific Atg proteins, can be triggered by a variety of stresses, including starvation. Because autophagy relies extensively on membrane traffic to form the membranous structures, factors that control membrane traffic are essential for autophagy. Among these factors, the monomeric GTP-binding proteins that cycle between active and inactive conformations form an important group. In this review, we summarize the functions of the monomeric GTP-binding proteins in autophagy, especially with reference to experiments in Saccharomyces cerevisiae.


Assuntos
Autofagia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...