Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 15(2): 206, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30591731

RESUMO

In the version of the article originally published, the x axis of the graph in Fig. 4d was incorrectly labeled as "Retention time (min)". It should read "Reaction time (min)". The 'deceased' footnote was also formatted incorrectly when published. The footnote text itself should include the name of co-author Tara A. Gianoulis in addition to the previous link to her name in the author list through footnote number 10. The errors have been corrected in the HTML and PDF versions of the article.

2.
Nat Chem Biol ; 14(6): 556-564, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29713061

RESUMO

The soil microbiome can produce, resist, or degrade antibiotics and even catabolize them. While resistance genes are widely distributed in the soil, there is a dearth of knowledge concerning antibiotic catabolism. Here we describe a pathway for penicillin catabolism in four isolates. Genomic and transcriptomic sequencing revealed ß-lactamase, amidase, and phenylacetic acid catabolon upregulation. Knocking out part of the phenylacetic acid catabolon or an apparent penicillin utilization operon (put) resulted in loss of penicillin catabolism in one isolate. A hydrolase from the put operon was found to degrade in vitro benzylpenicilloic acid, the ß-lactamase penicillin product. To test the generality of this strategy, an Escherichia coli strain was engineered to co-express a ß-lactamase and a penicillin amidase or the put operon, enabling it to grow using penicillin or benzylpenicilloic acid, respectively. Elucidation of additional pathways may allow bioremediation of antibiotic-contaminated soils and discovery of antibiotic-remodeling enzymes with industrial utility.


Assuntos
Microbiota , Fases de Leitura Aberta , Microbiologia do Solo , beta-Lactamas/metabolismo , Amidoidrolases/metabolismo , Burkholderia , Clonagem Molecular , Regulação Bacteriana da Expressão Gênica , Genoma , Hidrolases/metabolismo , Testes de Sensibilidade Microbiana , Óperon , Penicilinas/metabolismo , Fenilacetatos/metabolismo , Filogenia , Pseudomonas , Solo , Transcriptoma , Regulação para Cima , beta-Lactamases/metabolismo
4.
J Proteome Res ; 17(1): 479-485, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29172549

RESUMO

As wearable fitness devices have gained commercial acceptance, interest in real-time monitoring of an individual's physiological status using noninvasive techniques has grown. Microneedles have been proposed as a minimally invasive technique for sampling the dermal interstitial fluid (ISF) for clinical monitoring and diagnosis, but little is known about its composition. In this study, a novel microneedle array was used to collect dermal ISF from three healthy human donors and compared with matching serum and plasma samples. Using a shotgun quantitative proteomic approach, 407 proteins were quantified with at least one unique peptide, and of those, 135 proteins were differently expressed at least 2-fold. Collectively, these proteins tended to originate from the cytoplasm, membrane bound vesicles, and extracellular vesicular exosomes. Proteomic analysis confirmed previously published work that indicates that ISF is highly similar to both plasma and serum. In this study, less than one percent of proteins were uniquely identified in ISF. Taken together, ISF could serve as a minimally invasive alternative for blood-derived fluids with potential for real-time monitoring applications.


Assuntos
Líquido Extracelular/química , Proteômica/métodos , Pele/química , Manejo de Espécimes/métodos , Voluntários Saudáveis , Humanos , Agulhas , Plasma/química , Soro/química
5.
Genome Announc ; 5(32)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798166

RESUMO

Most antibiotics are derived from the soil, but their catabolism there, which is necessary to close the antibiotic carbon cycle, remains uncharacterized. We report the first draft genome sequences of soil Proteobacteria identified for subsisting solely on ß-lactams as their carbon sources. The genomes encode multiple ß-lactamases, although their antibiotic catabolic pathways remain enigmatic.

6.
Emerg Infect Dis ; 22(8): 1448-51, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191483

RESUMO

Nanopore sequencing, a novel genomics technology, has potential applications for routine biosurveillance, clinical diagnosis, and outbreak investigation of virus infections. Using rapid sequencing of unamplified RNA/cDNA hybrids, we identified Venezuelan equine encephalitis virus and Ebola virus in 3 hours from sample receipt to data acquisition, demonstrating a fieldable technique for RNA virus characterization.


Assuntos
DNA Complementar/genética , Ebolavirus/isolamento & purificação , Vírus da Encefalite Equina Venezuelana/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Vírus de RNA/isolamento & purificação , RNA/genética , Nanoporos , Fatores de Tempo
8.
Appl Environ Microbiol ; 82(2): 596-607, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26567301

RESUMO

Effective microbial forensic analysis of materials used in a potential biological attack requires robust methods of morphological and genetic characterization of the attack materials in order to enable the attribution of the materials to potential sources and to exclude other potential sources. The genetic homogeneity and potential intersample variability of many of the category A to C bioterrorism agents offer a particular challenge to the generation of attributive signatures, potentially requiring whole-genome or proteomic approaches to be utilized. Currently, irradiation of mail is standard practice at several government facilities judged to be at particularly high risk. Thus, initial forensic signatures would need to be recovered from inactivated (nonviable) material. In the study described in this report, we determined the effects of high-dose gamma irradiation on forensic markers of bacterial biothreat agent surrogate organisms with a particular emphasis on the suitability of genomic DNA (gDNA) recovered from such sources as a template for whole-genome analysis. While irradiation of spores and vegetative cells affected the retention of Gram and spore stains and sheared gDNA into small fragments, we found that irradiated material could be utilized to generate accurate whole-genome sequence data on the Illumina and Roche 454 sequencing platforms.


Assuntos
Bactérias/efeitos da radiação , Armas Biológicas , Genoma Bacteriano/efeitos da radiação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Ciências Forenses , Raios gama , Análise de Sequência de DNA
9.
BMC Bioinformatics ; 16: 416, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714571

RESUMO

BACKGROUND: The detection of pathogens in complex sample backgrounds has been revolutionized by wide access to next-generation sequencing (NGS) platforms. However, analytical methods to support NGS platforms are not as uniformly available. Pathosphere (found at Pathosphere.org) is a cloud - based open - sourced community tool that allows for communication, collaboration and sharing of NGS analytical tools and data amongst scientists working in academia, industry and government. The architecture allows for users to upload data and run available bioinformatics pipelines without the need for onsite processing hardware or technical support. RESULTS: The pathogen detection capabilities hosted on Pathosphere were tested by analyzing pathogen-containing samples sequenced by NGS with both spiked human samples as well as human and zoonotic host backgrounds. Pathosphere analytical pipelines developed by Edgewood Chemical Biological Center (ECBC) identified spiked pathogens within a common sample analyzed by 454, Ion Torrent, and Illumina sequencing platforms. ECBC pipelines also correctly identified pathogens in human samples containing arenavirus in addition to animal samples containing flavivirus and coronavirus. These analytical methods were limited in the detection of sequences with limited homology to previous annotations within NCBI databases, such as parvovirus. Utilizing the pipeline-hosting adaptability of Pathosphere, the analytical suite was supplemented by analytical pipelines designed by the United States Army Medical Research Insititute of Infectious Diseases and Walter Reed Army Institute of Research (USAMRIID-WRAIR). These pipelines were implemented and detected parvovirus sequence in the sample that the ECBC iterative analysis previously failed to identify. CONCLUSIONS: By accurately detecting pathogens in a variety of samples, this work demonstrates the utility of Pathosphere and provides a platform for utilizing, modifying and creating pipelines for a variety of NGS technologies developed to detect pathogens in complex sample backgrounds. These results serve as an exhibition for the existing pipelines and web-based interface of Pathosphere as well as the plug-in adaptability that allows for integration of newer NGS analytical software as it becomes available.


Assuntos
Interface Usuário-Computador , Algoritmos , Animais , Arenavirus/genética , Arenavirus/isolamento & purificação , Biologia Computacional , Coronavirus/genética , Coronavirus/isolamento & purificação , Bases de Dados Factuais , Flavivirus/genética , Flavivirus/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , RNA Viral/química , RNA Viral/metabolismo , Análise de Sequência de RNA
10.
PLoS One ; 10(10): e0140274, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26484663

RESUMO

The pangenomic diversity in Burkholderia pseudomallei is high, with approximately 5.8% of the genome consisting of genomic islands. Genomic islands are known hotspots for recombination driven primarily by site-specific recombination associated with tRNAs. However, recombination rates in other portions of the genome are also high, a feature we expected to disrupt gene order. We analyzed the pangenome of 37 isolates of B. pseudomallei and demonstrate that the pangenome is 'open', with approximately 136 new genes identified with each new genome sequenced, and that the global core genome consists of 4568±16 homologs. Genes associated with metabolism were statistically overrepresented in the core genome, and genes associated with mobile elements, disease, and motility were primarily associated with accessory portions of the pangenome. The frequency distribution of genes present in between 1 and 37 of the genomes analyzed matches well with a model of genome evolution in which 96% of the genome has very low recombination rates but 4% of the genome recombines readily. Using homologous genes among pairs of genomes, we found that gene order was highly conserved among strains, despite the high recombination rates previously observed. High rates of gene transfer and recombination are incompatible with retaining gene order unless these processes are either highly localized to specific sites within the genome, or are characterized by symmetrical gene gain and loss. Our results demonstrate that both processes occur: localized recombination introduces many new genes at relatively few sites, and recombination throughout the genome generates the novel multi-locus sequence types previously observed while preserving gene order.


Assuntos
Burkholderia pseudomallei/genética , Ordem dos Genes , Genes Bacterianos/genética , Genoma Bacteriano/genética , Algoritmos , Burkholderia pseudomallei/classificação , Burkholderia pseudomallei/isolamento & purificação , Evolução Molecular , Transferência Genética Horizontal , Variação Genética , Modelos Genéticos , Recombinação Genética , Especificidade da Espécie
11.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931589

RESUMO

Francisella tularensis is a highly infectious bacterium with the potential to cause high fatality rates if infections are untreated. To aid in the development of rapid and accurate detection assays, we have sequenced and annotated the genomes of 18 F. tularensis and Francisella philomiragia strains.

12.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931590

RESUMO

The genus Yersinia includes three human pathogens, of which Yersinia pestis is responsible for >2,000 illnesses each year. To aid in the development of detection assays and aid further phylogenetic elucidation, we sequenced and assembled the complete genomes of 32 strains (across 9 Yersinia species).

13.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931591

RESUMO

In 2011, the Association of Analytical Communities (AOAC) International released a list of Bacillus strains relevant to biothreat molecular detection assays. We present the complete and annotated genome assemblies for the 15 strains listed on the inclusivity panel, as well as the 20 strains listed on the exclusivity panel.

14.
Genome Announc ; 3(2)2015 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-25931592

RESUMO

The genus Burkholderia encompasses both pathogenic (including Burkholderia mallei and Burkholderia pseudomallei, U.S. Centers for Disease Control and Prevention Category B listed), and nonpathogenic Gram-negative bacilli. Here we present full genome sequences for a panel of 59 Burkholderia strains, selected to aid in detection assay development.

15.
mBio ; 6(2)2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25900650

RESUMO

UNLABELLED: Cholera continues to be a global threat, with high rates of morbidity and mortality. In 2011, a cholera outbreak occurred in Palawan, Philippines, affecting more than 500 people, and 20 individuals died. Vibrio cholerae O1 was confirmed as the etiological agent. Source attribution is critical in cholera outbreaks for proper management of the disease, as well as to control spread. In this study, three V. cholerae O1 isolates from a Philippines cholera outbreak were sequenced and their genomes analyzed to determine phylogenetic relatedness to V. cholerae O1 isolates from recent outbreaks of cholera elsewhere. The Philippines V. cholerae O1 isolates were determined to be V. cholerae O1 hybrid El Tor belonging to the seventh-pandemic clade. They clustered tightly, forming a monophyletic clade closely related to V. cholerae O1 hybrid El Tor from Asia and Africa. The isolates possess a unique multilocus variable-number tandem repeat analysis (MLVA) genotype (12-7-9-18-25 and 12-7-10-14-21) and lack SXT. In addition, they possess a novel 15-kb genomic island (GI-119) containing a predicted type I restriction-modification system. The CTXΦ-RS1 array of the Philippines isolates was similar to that of V. cholerae O1 MG116926, a hybrid El Tor strain isolated in Bangladesh in 1991. Overall, the data indicate that the Philippines V. cholerae O1 isolates are unique, differing from recent V. cholerae O1 isolates from Asia, Africa, and Haiti. Furthermore, the results of this study support the hypothesis that the Philippines isolates of V. cholerae O1 are indigenous and exist locally in the aquatic ecosystem of the Philippines. IMPORTANCE: Genetic characterization and phylogenomics analysis of outbreak strains have proven to be critical for probing clonal relatedness to strains isolated in different geographical regions and over time. Recently, extensive genetic analyses of V. cholerae O1 strains isolated in different countries have been done. However, genome sequences of V. cholerae O1 isolates from the Philippines have not been available for epidemiological investigation. In this study, molecular typing and phylogenetic analysis of Vibrio cholerae isolated from both clinical and environmental samples in 2011 confirmed unique genetic features of the Philippines isolates, which are helpful to understand the global epidemiology of cholera.


Assuntos
Cólera/epidemiologia , Cólera/microbiologia , Surtos de Doenças , Genes Bacterianos , Vibrio cholerae O1/genética , Vibrio cholerae O1/isolamento & purificação , Análise por Conglomerados , Farmacorresistência Bacteriana , Genoma Bacteriano , Genótipo , Repetições Minissatélites , Dados de Sequência Molecular , Tipagem Molecular , Filipinas/epidemiologia , Filogenia , Recombinação Genética , Análise de Sequência de DNA , Homologia de Sequência , Vibrio cholerae O1/classificação
16.
Gigascience ; 4: 12, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815165

RESUMO

BACKGROUND: The MinION™ nanopore sequencer was recently released to a community of alpha-testers for evaluation using a variety of sequencing applications. Recent reports have tested the ability of the MinION™ to act as a whole genome sequencer and have demonstrated that nanopore sequencing has tremendous potential utility. However, the current nanopore technology still has limitations with respect to error-rate, and this is problematic when attempting to assemble whole genomes without secondary rounds of sequencing to correct errors. In this study, we tested the ability of the MinION™ nanopore sequencer to accurately identify and differentiate bacterial and viral samples via directed sequencing of characteristic genes shared broadly across a target clade. RESULTS: Using a 6 hour sequencing run time, sufficient data were generated to identify an E. coli sample down to the species level from 16S rDNA amplicons. Three poxviruses (cowpox, vaccinia-MVA, and vaccinia-Lister) were identified and differentiated down to the strain level, despite over 98% identity between the vaccinia strains. The ability to differentiate strains by amplicon sequencing on the MinION™ was accomplished despite an observed per-base error rate of approximately 30%. CONCLUSIONS: While nanopore sequencing, using the MinION™ platform from Oxford Nanopore in particular, continues to mature into a commercially available technology, practical uses are sought for the current versions of the technology. This study offers evidence of the utility of amplicon sequencing by demonstrating that the current versions of MinION™ technology can accurately identify and differentiate both viral and bacterial species present within biological samples via amplicon sequencing.


Assuntos
Bactérias/genética , Análise de Sequência de DNA/métodos , Vírus/genética , Classificação/métodos , Nanoporos
17.
PLoS One ; 7(11): e48228, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23133618

RESUMO

In May of 2011, an enteroaggregative Escherichia coli O104:H4 strain that had acquired a Shiga toxin 2-converting phage caused a large outbreak of bloody diarrhea in Europe which was notable for its high prevalence of hemolytic uremic syndrome cases. Several studies have described the genomic inventory and phylogenies of strains associated with the outbreak and a collection of historical E. coli O104:H4 isolates using draft genome assemblies. We present the complete, closed genome sequences of an isolate from the 2011 outbreak (2011C-3493) and two isolates from cases of bloody diarrhea that occurred in the Republic of Georgia in 2009 (2009EL-2050 and 2009EL-2071). Comparative genome analysis indicates that, while the Georgian strains are the nearest neighbors to the 2011 outbreak isolates sequenced to date, structural and nucleotide-level differences are evident in the Stx2 phage genomes, the mer/tet antibiotic resistance island, and in the prophage and plasmid profiles of the strains, including a previously undescribed plasmid with homology to the pMT virulence plasmid of Yersinia pestis. In addition, multiphenotype analysis showed that 2009EL-2071 possessed higher resistance to polymyxin and membrane-disrupting agents. Finally, we show evidence by electron microscopy of the presence of a common phage morphotype among the European and Georgian strains and a second phage morphotype among the Georgian strains. The presence of at least two stx2 phage genotypes in host genetic backgrounds that may derive from a recent common ancestor of the 2011 outbreak isolates indicates that the emergence of stx2 phage-containing E. coli O104:H4 strains probably occurred more than once, or that the current outbreak isolates may be the result of a recent transfer of a new stx2 phage element into a pre-existing stx2-positive genetic background.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Prófagos/genética , Toxina Shiga II/genética , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/genética , Área Sob a Curva , DNA/metabolismo , Surtos de Doenças , Variação Genética , Genômica , Genótipo , República da Geórgia , Humanos , Testes de Sensibilidade Microbiana , Fenótipo , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Virulência , Yersinia pestis/genética
18.
Appl Environ Microbiol ; 78(23): 8272-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23001658

RESUMO

The development of realistic risk models that predict the dissemination, dispersion and persistence of potential biothreat agents have utilized nonpathogenic surrogate organisms such as Bacillus atrophaeus subsp. globigii or commercial products such as Bacillus thuringiensis subsp. kurstaki. Comparison of results from outdoor tests under different conditions requires the use of genetically identical strains; however, the requirement for isogenic strains limits the ability to compare other desirable properties, such as the behavior in the environment of the same strain prepared using different methods. Finally, current methods do not allow long-term studies of persistence or reaerosolization in test sites where simulants are heavily used or in areas where B. thuringiensis subsp. kurstaki is applied as a biopesticide. To create a set of genetically heterogeneous yet phenotypically indistinguishable strains so that variables intrinsic to simulations (e.g., sample preparation) can be varied and the strains can be tested under otherwise identical conditions, we have developed a strategy of introducing small genetic signatures ("barcodes") into neutral regions of the genome. The barcodes are stable over 300 generations and do not impact in vitro growth or sporulation. Each barcode contains common and specific tags that allow differentiation of marked strains from wild-type strains and from each other. Each tag is paired with specific real-time PCR assays that facilitate discrimination of barcoded strains from wild-type strains and from each other. These uniquely barcoded strains will be valuable tools for research into the environmental fate of released organisms by providing specific artificial detection signatures.


Assuntos
Bacillus thuringiensis/genética , Bacillus thuringiensis/isolamento & purificação , Técnicas Bacteriológicas/métodos , Código de Barras de DNA Taxonômico/métodos , Microbiologia Ambiental , Biologia Molecular/métodos , Bacillus anthracis/isolamento & purificação , Bacillus thuringiensis/classificação , Instabilidade Genômica , Modelos Biológicos , Coloração e Rotulagem/métodos
19.
PLoS One ; 7(2): e31604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22359605

RESUMO

Plague disease caused by the gram-negative bacterium Yersinia pestis routinely affects animals and occasionally humans, in the western United States. The strains native to the North American continent are thought to be derived from a single introduction in the late 19(th) century. The degree to which these isolates have diverged genetically since their introduction is not clear, and new genomic markers to assay the diversity of North American plague are highly desired. To assay genetic diversity of plague isolates within confined geographic areas, draft genome sequences were generated by 454 pyrosequencing from nine environmental and clinical plague isolates. In silico assemblies of Variable Number Tandem Repeat (VNTR) loci were compared to laboratory-generated profiles for seven markers. High-confidence SNPs and small Insertion/Deletions (Indels) were compared to previously sequenced Y. pestis isolates. The resulting panel of mutations allowed clustering of the strains and tracing of the most likely evolutionary trajectory of the plague strains. The sequences also allowed the identification of new putative SNPs that differentiate the 2009 isolates from previously sequenced plague strains and from each other. In addition, new insertion points for the abundant insertion sequences (IS) of Y. pestis are present that allow additional discrimination of strains; several of these new insertions potentially inactivate genes implicated in virulence. These sequences enable whole-genome phylogenetic analysis and allow the unbiased comparison of closely related isolates of a genetically monomorphic pathogen.


Assuntos
Genoma Bacteriano/genética , Peste/genética , Yersinia pestis/isolamento & purificação , Marcadores Genéticos , Variação Genética , Genômica , New Mexico , Peste/microbiologia , Virulência/genética , Yersinia pestis/genética
20.
PLoS One ; 6(3): e17836, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21464989

RESUMO

BACKGROUND: Despite the decades-long use of Bacillus atrophaeus var. globigii (BG) as a simulant for biological warfare (BW) agents, knowledge of its genome composition is limited. Furthermore, the ability to differentiate signatures of deliberate adaptation and selection from natural variation is lacking for most bacterial agents. We characterized a lineage of BGwith a long history of use as a simulant for BW operations, focusing on classical bacteriological markers, metabolic profiling and whole-genome shotgun sequencing (WGS). RESULTS: Archival strains and two "present day" type strains were compared to simulant strains on different laboratory media. Several of the samples produced multiple colony morphotypes that differed from that of an archival isolate. To trace the microevolutionary history of these isolates, we obtained WGS data for several archival and present-day strains and morphotypes. Bacillus-wide phylogenetic analysis identified B. subtilis as the nearest neighbor to B. atrophaeus. The genome of B. atrophaeus is, on average, 86% identical to B. subtilis on the nucleotide level. WGS of variants revealed that several strains were mixed but highly related populations and uncovered a progressive accumulation of mutations among the "military" isolates. Metabolic profiling and microscopic examination of bacterial cultures revealed enhanced growth of "military" isolates on lactate-containing media, and showed that the "military" strains exhibited a hypersporulating phenotype. CONCLUSIONS: Our analysis revealed the genomic and phenotypic signatures of strain adaptation and deliberate selection for traits that were desirable in a simulant organism. Together, these results demonstrate the power of whole-genome and modern systems-level approaches to characterize microbial lineages to develop and validate forensic markers for strain discrimination and reveal signatures of deliberate adaptation.


Assuntos
Bacillus/genética , Armas Biológicas , Engenharia Genética/métodos , Genoma Bacteriano/genética , Alelos , Bacillus/citologia , Bacillus/enzimologia , Bacillus/isolamento & purificação , Pareamento de Bases/genética , Catalase/metabolismo , Contagem de Colônia Microbiana , Biologia Computacional , Análise Mutacional de DNA , Evolução Molecular , Genótipo , Mutação INDEL/genética , Metaboloma/genética , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Deleção de Sequência , Esporos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...