Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34442812

RESUMO

An outbreak of bacterial soft rot and blackleg of potato has occurred since 2014 with the epicenter being in the northeastern region of the United States. Multiple species of Pectobacterium and Dickeya are causal agents, resulting in losses to commercial and seed potato production over the past decade in the Northeastern and North Central United States. To clarify the pathogen present at the outset of the epidemic in 2015 and 2016, a phylogenetic study was made of 121 pectolytic soft rot bacteria isolated from symptomatic potato; also included were 27 type strains of Dickeya and Pectobacterium species, and 47 historic reference strains. Phylogenetic trees constructed based on multilocus sequence alignments of concatenated dnaJ, dnaX and gyrB fragments revealed the epidemic isolates to cluster with type strains of D. chrysanthemi, D. dianthicola, D. dadantii, P. atrosepticum, P. brasiliense, P. carotovorum, P. parmentieri, P. polaris, P. punjabense, and P. versatile. Genetic diversity within D. dianthicola strains was low, with one sequence type (ST1) identified in 17 of 19 strains. Pectobacterium parmentieri was more diverse, with ten sequence types detected among 37 of the 2015-2016 strains. This study can aid in monitoring future shifts in potato soft rot pathogens within the U.S. and inform strategies for disease management.

2.
Plant Dis ; 96(5): 718-725, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-30727523

RESUMO

Potato common scab, caused by Streptomyces spp., is an annual production problem for potato growers, and not effectively controlled by current methods. A field with naturally occurring common scab suppression has been identified in Michigan, and confirmed to have a biological basis for this disease suppression. This field and an adjacent scab nursery conducive to disease were studied using pyrosequencing to compare the two microbial communities. Total DNA was extracted from both the disease-conducive and -suppressive soils. A phylogenetically taxon-informative region of the 16S rRNA gene was used to establish operational taxonomic units (OTUs) to characterize bacterial community richness and diversity. In total, 1,124 OTUs were detected and 565 OTUs (10% dissimilarity) were identified in disease-conducive soil and 859 in disease-suppressive soil, including 300 shared both between sites. Common phyla based on relative sequence abundance were Acidobacteria, Proteobacteria, and Firmicutes. Sequences of Lysobacter were found in significantly higher numbers in the disease-suppressive soil, as were sequences of group 4 and group 6 Acidobacteria. The relative abundance of sequences identified as the genus Bacillus was significantly higher by an order of magnitude in the disease-conducive soil.

3.
Plant Dis ; 96(5): 712-717, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-30727529

RESUMO

A field in East Lansing, MI, showed a decline of potato common scab compared with an adjacent potato field. To confirm that the decline was due to biological factors, the soil was assayed. In the greenhouse, putative common-scab-suppressive soil (SS) was either treated with various temperatures or mixed with autoclaved SS at various ratios. Pathogenic Streptomyces scabies was incorporated into the treated soil at 106 CFU/cm3 of soil, followed by planting of either potato or radish. Disease severity was negatively correlated with the percentage of SS in the mixture and positively correlated with temperature above 60°C. The soil was screened for four groups of potential antagonists (general bacteria, streptomycetes, fluorescent pseudomonads, and bacilli) pairing in culture with S. scabies. The frequency of antagonistic bacteria in SS was higher than common-scab-conducive soil (CS) in all four groups but only pseudomonads and streptomycetes were significantly higher. The population of pathogenic Streptomyces spp. in the rhizosphere of CS was significantly higher than SS. Dilution plating of CS and SS samples showed no clear trends or differences in populations of total fungi, total bacteria, streptomycetes, fluorescent pseudomonads, and bacilli but terminal restriction fragment polymorphism analysis revealed two distinct microbial communities were present in SS and CS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...