Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 57(10): 2091-2103, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440548

RESUMO

Carbohydrate metabolism is a tightly regulated process in photosynthetic organisms. In the cyanobacterium Synechocystis sp. PCC 6803, the photomixotrophic growth protein A (PmgA) is involved in the regulation of glucose and storage carbohydrate (i.e. glycogen) metabolism, while its biochemical activity and possible factors acting downstream of PmgA are unknown. Here, a genome-wide microarray analysis of a ΔpmgA strain identified the expression of 36 protein-coding genes and 42 non-coding transcripts as significantly altered. From these, the non-coding RNA Ncr0700 was identified as the transcript most strongly reduced in abundance. Ncr0700 is widely conserved among cyanobacteria. In Synechocystis its expression is inversely correlated with light intensity. Similarly to a ΔpmgA mutant, a Δncr0700 deletion strain showed an approximately 2-fold increase in glycogen content under photoautotrophic conditions and wild-type-like growth. Moreover, its growth was arrested by 38 h after a shift to photomixotrophic conditions. Ectopic expression of Ncr0700 in Δncr0700 and ΔpmgA restored the glycogen content and photomixotrophic growth to wild-type levels. These results indicate that Ncr0700 is required for photomixotrophic growth and the regulation of glycogen accumulation, and acts downstream of PmgA. Hence Ncr0700 is renamed here as PmgR1 for photomixotrophic growth RNA 1.


Assuntos
Glicogênio/metabolismo , Processos Fototróficos/genética , RNA não Traduzido/metabolismo , Synechocystis/crescimento & desenvolvimento , Synechocystis/genética , Sequência de Bases , Regulação para Baixo/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos da radiação , Genoma Bacteriano , Genótipo , Luz , Mutação/genética , Processos Fototróficos/efeitos da radiação , RNA não Traduzido/genética , Reprodutibilidade dos Testes , Alinhamento de Sequência , Synechocystis/efeitos da radiação , Transcrição Gênica/efeitos da radiação , Regulação para Cima/genética
2.
J Biotechnol ; 162(1): 134-47, 2012 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-22677697

RESUMO

Development of sustainable energy is a pivotal step towards solutions for today's global challenges, including mitigating the progression of climate change and reducing dependence on fossil fuels. Biofuels derived from agricultural crops have already been commercialized. However the impacts on environmental sustainability and food supply have raised ethical questions about the current practices. Cyanobacteria have attracted interest as an alternative means for sustainable energy productions. Being aquatic photoautotrophs they can be cultivated in non-arable lands and do not compete for land for food production. Their rich genetic resources offer means to engineer metabolic pathways for synthesis of valuable bio-based products. Currently the major obstacle in industrial-scale exploitation of cyanobacteria as the economically sustainable production hosts is low yields. Much effort has been made to improve the carbon fixation and manipulating the carbon allocation in cyanobacteria and their evolutionary photosynthetic relatives, algae and plants. This review aims at providing an overview of the recent progress in the bioengineering of carbon fixation and allocation in cyanobacteria; wherever relevant, the progress made in plants and algae is also discussed as an inspiration for future application in cyanobacteria.


Assuntos
Biocombustíveis , Cianobactérias/química , Cianobactérias/metabolismo , Plantas/química , Plantas/metabolismo , Ciclo do Carbono , Engenharia Metabólica , Redes e Vias Metabólicas
3.
Photosynth Res ; 107(2): 215-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21302031

RESUMO

Genome sequences of microorganisms typically contain hundreds of genes with vaguely defined functions. Targeted gene inactivation and phenotypic characterization of the resulting mutant strains is a powerful strategy to investigate the function of these genes. We have adapted the recently reported uracil-specific excision reagent (USER) cloning method for targeted gene inactivation in cyanobacteria and used it to inactivate genes in glycogen metabolism in Synechococcus sp. PCC 7002. Knock-out plasmid constructs were made in a single cloning step, where transformation of E. coli yielded about 90% colonies with the correct construct. The two homologous regions were chosen independently of each other and of restriction sites in the target genome. Mutagenesis of Synechococcus sp. PCC 7002 was tested with four antibiotic resistance selection markers (spectinomycin, erythromycin, kanamycin, and gentamicin), and both single-locus and double-loci mutants were prepared. We found that Synechococcus sp. PCC 7002 contains two glycogen phosphorylases (A0481/glgP and A2139/agpA) and that both need to be genetically inactivated to eliminate glycogen phosphorylase activity in the cells.


Assuntos
Proteínas de Bactérias/genética , Glicogênio Fosforilase/genética , Glicogênio/metabolismo , Plasmídeos/genética , Synechococcus/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular , Escherichia coli/genética , Técnicas de Inativação de Genes , Inativação Gênica , Glicogênio Fosforilase/química , Dados de Sequência Molecular , Filogenia , Plasmídeos/química , Synechococcus/metabolismo
4.
Appl Biochem Biotechnol ; 143(3): 284-96, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18057455

RESUMO

In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.


Assuntos
Celulase/metabolismo , Hordeum/metabolismo , Triticum/metabolismo , beta-Glucosidase/metabolismo , Aspergillus niger/enzimologia , Biomassa , Ácidos Carboxílicos/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Hordeum/química , Hidrólise , Lignina/metabolismo , Monossacarídeos/metabolismo , Polissacarídeos/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Tempo , Trichoderma/enzimologia , Triticum/química
5.
Biotechnol Prog ; 23(6): 1270-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18062669

RESUMO

The commercial cellulase product Celluclast 1.5, derived from Trichoderma reesei (Novozymes A/S, Bagsvaerd, Denmark), is widely employed for hydrolysis of lignocellulosic biomass feedstocks. This enzyme preparation contains a broad spectrum of cellulolytic enzyme activities, most notably cellobiohydrolases (CBHs) and endo-1,4-beta-glucanases (EGs). Since the original T. reesei strain was isolated from decaying canvas, the T. reesei CBH and EG activities might be present in suboptimal ratios for hydrolysis of pretreated lignocellulosic substrates. We employed statistically designed combinations of the four main activities of Celluclast 1.5, CBHI, CBHII, EGI, and EGII, to identify the optimal glucose-releasing combination of these four enzymes to degrade barley straw substrates subjected to three different pretreatments. The data signified that EGII activity is not required for efficient lignocellulose hydrolysis when addition of this activity occurs at the expense of the remaining three activities. The optimal ratios of the remaining three enzymes were similar for the two pretreated barley samples that had been subjeced to different hot water pretreatments, but the relative levels of EGI and CBHII activities required in the enzyme mixture for optimal hydrolysis of the acid-impregnated, steam-exploded barley straw substrate were somewhat different from those required for the other two substrates. The optimal ratios of the cellulolytic activities in all cases differed from that of the cellulases secreted by T. reesei. Hence, the data indicate the feasibility of designing minimal enzyme mixtures for pretreated lignocellulosic biomass by careful combination of monocomponent enzymes. This strategy can promote both a more efficient enzymatic hydrolysis of (ligno)cellulose and a more rational utilization of enzymes.


Assuntos
Celulase/metabolismo , Hordeum/metabolismo , Trichoderma/enzimologia , Biomassa , Glucose/metabolismo , Hordeum/química , Hidrólise , Proteínas Recombinantes/biossíntese , Xilose/metabolismo , beta-Glucosidase/metabolismo
6.
Appl Biochem Biotechnol ; 143(1): 27-40, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18025594

RESUMO

In this study, the applicability of a "fed-batch" strategy, that is, sequential loading of substrate or substrate plus enzymes during enzymatic hydrolysis was evaluated for hydrolysis of steam-pretreated barley straw. The specific aims were to achieve hydrolysis of high substrate levels, low viscosity during hydrolysis, and high glucose concentrations. An enzyme system comprising Celluclast and Novozyme 188, a commercial cellulase product derived from Trichoderma reesei and a beta-glucosidase derived from Aspergillus niger, respectively, was used for the enzymatic hydrolysis. The highest final glucose concentration, 78 g/l, after 72 h of reaction, was obtained with an initial, full substrate loading of 15% dry matter weight/weight (w/w DM). Conversely, the glucose yields, in grams per gram of DM, were highest at lower substrate concentrations, with the highest glucose yield being 0.53 g/g DM for the reaction with a substrate loading of 5% w/w DM after 72 h. The reactions subjected to gradual loading of substrate or substrate plus enzymes to increase the substrate levels from 5 to 15% w/w DM, consistently provided lower concentrations of glucose after 72 h of reaction; however, the initial rates of conversion varied in the different reactions. Rapid cellulose degradation was accompanied by rapid decreases in viscosity before addition of extra substrate, but when extra substrate or substrate plus enzymes were added, the viscosities of the slurries increased and the hydrolytic efficiencies decreased temporarily.


Assuntos
Celulose/metabolismo , Hordeum/metabolismo , Lignina/metabolismo , Caules de Planta/metabolismo , Aspergillus , Celulase/fisiologia , Etanol/metabolismo , Glucose/biossíntese , Hidrólise , Especificidade por Substrato , Viscosidade , Zea mays , beta-Glucosidase/fisiologia
7.
Biotechnol Prog ; 22(2): 493-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16599567

RESUMO

This study examined the cellulytic effects on steam-pretreated barley straw of cellulose-degrading enzyme systems from the five thermophilic fungi Chaetomium thermophilum, Thielavia terrestris, Thermoascus aurantiacus, Corynascus thermophilus, and Myceliophthora thermophila and from the mesophile Penicillum funiculosum. The catalytic glucose release was compared after treatments with each of the crude enzyme systems when added to a benchmark blend of a commercial cellulase product, Celluclast, derived from Trichoderma reesei and a beta-glucosidase, Novozym 188, from Aspergillus niger. The enzymatic treatments were evaluated in an experimental design template comprising a span of pH (3.5-6.5) and temperature (35-65 degrees C) reaction combinations. The addition to Celluclast + Novozym 188 of low dosages of the crude enzyme systems, corresponding to 10 wt % of the total enzyme protein load, increased the catalytic glucose yields significantly as compared to those obtained with the benchmark Celluclast + Novozyme 188 blend. A comparison of glucose yields obtained on steam-pretreated barley straw and microcrystalline cellulose, Avicel, indicated that the yield improvements were mainly due to the presence of highly active endoglucanase activity/activities in the experimental enzyme preparations. The data demonstrated the feasibility of boosting the widely studied T. reeseicellulase enzyme system with additional enzymatic activity to achieve faster lignocellulose degradation. We conclude that this supplementation strategy appears feasible as a first step in identifying truly promising fungal enzyme sources for fast development of improved, commercially viable, enzyme preparations for lignocellulose degradation.


Assuntos
Ascomicetos/enzimologia , Celulase/metabolismo , Celulose/metabolismo , Hordeum/enzimologia , Lignina/metabolismo , Complexos Multienzimáticos/metabolismo , Caules de Planta/enzimologia , Celobiose/metabolismo , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Meios de Cultura , Fermentação , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Especificidade por Substrato , Temperatura
8.
FEBS J ; 272(15): 4002-10, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16045770

RESUMO

Subunit G of photosystem I is a nuclear-encoded protein, predicted to form two transmembrane alpha-helices separated by a loop region. We use in vitro import assays to show that the positively charged loop domain faces the stroma, whilst the N- and C-termini most likely face the lumen. PSI-G constructs in which a His- or Strep-tag is placed at the C-terminus or in the loop region insert with the same topology as wild-type photosystem I subunit G (PSI-G). However, the presence of the tags in the loop make the membrane-inserted protein significantly more sensitive to trypsin, apparently by disrupting the interaction between the loop and the PSI core. Knock-out plants lacking PSI-G were transformed with constructs encoding the C-terminal and loop-tagged PSI-G proteins. Experiments on thylakoids from the transgenic lines show that the C-terminally tagged versions of PSI-G adopt the same topology as wild-type PSI-G, whereas the loop-tagged versions affect the sensitivity of the loop region to trypsin, thus confirming the in vitro observations. Furthermore, purification of PSI complexes from transgenic plants revealed that all the tagged versions of PSI-G are incorporated and retained in the PSI complex, although the C-terminally tagged variants of PSI-G were preferentially retained. This suggests that the loop region of PSI-G is important for proper integration into the PSI core. Our experiments demonstrate that it is possible to produce His- and Strep-tagged PSI in plants, and provide further evidence that the topology of membrane proteins is dictated by the distribution of positive charges, which resist translocation across membranes.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Complexo de Proteína do Fotossistema I/química , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Peptídeo Hidrolases , Complexo de Proteína do Fotossistema I/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Coloração e Rotulagem
9.
Plant Cell Physiol ; 44(1): 44-54, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12552146

RESUMO

Arabidopsis thaliana plants lacking the PSI-H or PSI-L subunit of photosystem I have been shown to be severely affected in their ability to perform state transitions, but no visual phenotype was observed when these plants were grown under different light quantities and qualities. However, the chloroplasts in the PSI-H- and PSI-L-less plants contained fewer and more extended grana stacks. The plants lacking PSI-H or PSI-L were characterised with respect to their photosynthetic performance. Wild-type plants adjusted the non-photochemical fluorescence quenching to maintain constant levels of PSII quantum yield and reduction of the plastoquinone pool. In contrast, the plants deficient in state transitions had a more reduced plastoquinone pool and consequently, a less efficient PSII-photochemistry under growth-light conditions and in state 2. The maximal photosynthetic capacity and the quantum efficiency of oxygen evolution were diminished by 8-14% in the PSI-H-less plants. Under growth-light conditions, the stroma was similarly reduced in the PSI-H-less plants and the rate of cyclic electron transport was unchanged. Pigment analysis showed that the xanthophyll cycle was not upregulated in order to compensate for the lack of state transitions. In general, the plants lacking PSI-H and PSI-L showed a decreased ability to optimise photosynthesis according to the light conditions.


Assuntos
Arabidopsis/genética , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Cloroplastos/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Transporte de Elétrons/fisiologia , Transporte de Elétrons/efeitos da radiação , Fluorescência , Luz , Microscopia Eletrônica , Oxirredução , Oxigênio/metabolismo , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Complexo de Proteína do Fotossistema I , Pigmentos Biológicos/metabolismo , Plastoquinona/metabolismo , Xantofilas/metabolismo
10.
J Biol Chem ; 277(4): 2798-803, 2002 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-11707465

RESUMO

PSI-G is a subunit of photosystem I in eukaryotes. The function of PSI-G was characterized in Arabidopsis plants transformed with a psaG cDNA in antisense orientation. Several plants with significantly decreased PSI-G protein content were identified. Plants with reduced PSI-G content were indistinguishable from wild type when grown under optimal conditions, despite a 40% reduction of photosystem I. This decrease of photosystem I was correlated with a similar reduction in state transitions. Surprisingly, the reduced photosystem I content was compensated for by a more effective photosystem I because the light-dependent reduction of NADP(+) in vitro was 48% higher. Photosystem I antenna size determined from flash-induced P700 absorption changes did not reveal any significant effect on the size of the photosystem I antenna in the absence of PSI-G, whereas a 17% reduction was seen in the absence of PSI-K. However, nondenaturing green gels revealed that the interaction between photosystem I and the light-harvesting complex I was less stable in the absence of PSI-G. Thus, PSI-G plays a role in stabilizing the binding of the peripheral antenna. The increased activity in the absence of PSI-G suggests that PSI-G could have an important role in regulation of photosystem I.


Assuntos
Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteína do Fotossistema I , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Arabidopsis/genética , Linhagem Celular Transformada , Cromatografia Líquida de Alta Pressão , DNA Complementar/metabolismo , Vetores Genéticos , Immunoblotting , Luz , Microscopia de Fluorescência , NADP/metabolismo , Oligonucleotídeos Antissenso/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Ligação Proteica , Temperatura , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA