Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 10(4): 757-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24081781

RESUMO

Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special-it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.


Assuntos
Epigênese Genética , Regeneração Nervosa/genética , Traumatismos da Medula Espinal/genética , Medula Espinal/fisiopatologia , Humanos , Traumatismos da Medula Espinal/fisiopatologia
2.
Glia ; 61(11): 1873-89, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24038549

RESUMO

Olfactory ensheathing cells (OECs) support the ability of the olfactory neuraxis to continually retarget within the mature central nervous system. This has led many groups to transplant OECS into the lesioned rodent spinal cord (SCd) in vivo, with variable degrees of anatomical, physiological, and behavioral success. Some of the most conflicting results in OEC transplantation have come from the corticospinal tract (CST) which has shown a relatively poor regeneration response. Although spinal neurite sprouting occurs in response to OECs in vivo and in vitro, we do not know if OECs possess the molecular machinery to stimulate outgrowth of functionally important motor tracts like the CST. Here, we assay cultured postnatal day 8 mouse CST neurons expressing yellow fluorescent protein (YFP) for their ability to extend axons and dendrites in response to different glia, and show that CST axons elongate in response to proteins in OEC plasma membrane (PM). In contrast, CST dendritic branching preferentially occurs in response to factors secreted by both OECs and astrocytes. We identify the L1-neural cell adhesion molecule (L1-NCAM) as a major component of OEC-induced corticospinal axon elongation, and have determined that OEC PM factors (including L1), can stimulate CST outgrowth even when inhibition is induced by myelin associated glycoprotein. Together, these results suggest that in the right context, OEC-derived PM factors could enhance CST axonal regeneration, and potentially contribute to approaches to ameliorate recovery from SCd injury.


Assuntos
Astrócitos/citologia , Axônios/metabolismo , Regeneração Nervosa/fisiologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuritos/metabolismo , Bulbo Olfatório/citologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Neuritos/patologia , Neurônios/citologia , Neurônios/metabolismo , Bulbo Olfatório/metabolismo , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
3.
Int J Dev Neurosci ; 31(6): 434-47, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23542004

RESUMO

The mammalian central nervous system (CNS) undergoes significant expansion postnatally, producing astrocytes, oligodendrocytes and inhibitory neurons to modulate the activity of neural circuits. This is coincident in humans with the emergence of pediatric epilepsy, a condition commonly treated with valproate/valproic acid (VPA), a potent inhibitor of histone deacetylases (HDACs). The sequential activity of specific HDACs, however, may be essential for the differentiation of distinct subpopulations of neurons and glia. Here, we show that different subsets of CNS neural stem cells (NSCs) and progenitors switch expression of HDAC1 and HDAC2 as they commit to a neurogenic lineage in the subventricular zone (SVZ) and dentate gyrus (DG). The administration of VPA for only one week from P7-P14, combined with sequential injections of thymidine analogs reveals that VPA stimulates a significant and differential decrease in the production and differentiation of progeny of NSCs in the DG, rostral migratory stream (RMS), and olfactory bulb (OB). Cross-fostering VPA-treated mice revealed, however, that a postnatal failure to thrive induced by VPA treatment had a greater effect on DG neurogenesis than VPA action directly. By one month after VPA, OB interneuron genesis was significantly and differentially reduced in both periglomerular and granule neurons. Using neurosphere assays to test if VPA directly regulates NSC activity, we found that short term treatment with VPA in vivo reduced neurosphere numbers and size, a phenotype that was also obtained in neurospheres from control mice treated with VPA and an alternative HDAC inhibitor, Trichostatin A (TSA) at 0 and 3 days in vitro (DIV). Collectively, these data show that clinically used HDAC inhibitors like VPA and TSA can perturb postnatal neurogenesis; and their use should be carefully considered, especially in individuals whose brains are actively undergoing key postnatal time windows of development.


Assuntos
Encéfalo/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Fatores Etários , Animais , Animais Recém-Nascidos , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Bromodesoxicitidina/análogos & derivados , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxiuridina/farmacologia , Relação Dose-Resposta a Droga , Histona Desacetilase 1/metabolismo , Histona Desacetilase 2/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ácido Valproico/farmacologia
4.
J Neurosci ; 33(10): 4468-81, 2013 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-23467362

RESUMO

Secreted protein acidic rich in cysteine (SPARC) is a matricellular protein that modulates the activity of growth factors, cytokines, and extracellular matrix to play multiple roles in tissue development and repair, such as cellular adhesion, migration, and proliferation. Throughout the CNS, SPARC is highly localized in mature ramified microglia, but its role in microglia--in development or during response to disease or injury--is not understood. In the postnatal brain, immature amoeboid myeloid precursors only induce SPARC expression after they cease proliferation and migration, and transform into mature, ramified resting microglia. SPARC null/CX3CR1-GFP reporter mice reveal that SPARC regulates the distribution and branching of mature microglia, with significant differences between cortical gray and white matter in both controls and SPARC nulls. Following ischemic and excitotoxic lesion, reactive, hypertrophic microglia rapidly downregulate and release SPARC at the lesion, concomitant with reactive, hypertrophic perilesion astrocytes upregulating SPARC. After photothrombotic stroke in the forelimb sensorimotor cortex, SPARC nulls demonstrate enhanced microgliosis in and around the lesion site, which accompanies significantly enhanced functional recovery by 32 d after lesion. Microglia from SPARC nulls also intrinsically proliferate at a greater rate in vitro--an enhanced effect that can be rescued by the addition of exogenous SPARC. SPARC is thus a novel regulator of microglial proliferation and structure, and, in addition to regulating glioma progression, may play an important role in differently regulating the gray and white matter microglial responses to CNS lesion--and modulating behavioral recovery--after injury.


Assuntos
Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Gliose/etiologia , Glicoproteínas/metabolismo , Recuperação de Função Fisiológica/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Fatores Etários , Animais , Animais Recém-Nascidos , Infarto Encefálico/etiologia , Infarto Encefálico/patologia , Isquemia Encefálica/etiologia , Receptor 1 de Quimiocina CX3C , Proteínas de Ligação ao Cálcio/metabolismo , Contagem de Células , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Proliferação de Células/efeitos dos fármacos , Tamanho Celular , Células Cultivadas , Modelos Animais de Doenças , Agonistas de Aminoácidos Excitatórios/toxicidade , Feminino , Membro Anterior/fisiopatologia , Galectina 3/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Glicoproteínas/deficiência , Glicoproteínas/farmacologia , Proteínas de Fluorescência Verde/genética , Trombose Intracraniana/complicações , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/fisiologia , Destreza Motora/efeitos dos fármacos , Destreza Motora/fisiologia , Mutação/genética , N-Metilaspartato/toxicidade , Bulbo Olfatório/lesões , Osteonectina , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Quimiocinas/genética , Fatores de Tempo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/farmacologia , Quinase Induzida por NF-kappaB
5.
Stem Cells Dev ; 22(4): 525-37, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23137310

RESUMO

Lifelong neurogenesis in the mouse olfactory epithelium (OE) is regulated by the response of stem/progenitor cells to local signals, but embryonic and adult OE progenitors appear to be quite different--with potentially different mechanisms of regulation. A recently identified progenitor unique to embryonic OE--the nestin+ radial glial-like progenitor--precedes some Mash1+ progenitors in the olfactory receptor neuron (ORN) lineage, which then gives rise to immediate neuronal precursors and immature ORNs. Neurogenic drive at each stage is governed largely by exogenous factors. Fibroblast growth factor 2 (FGF2) is believed to increase cell proliferation in both presumptive OE stem cells and immediate neuronal precursors in explants, but whether FGF2 directly acts on different target progenitors or stages in the embryonic OE is not known. Here we show that fibroblast growth factor receptor (FGFR)1 and FGFR2 are found in a variety of embryonic olfactory cells, including olfactory ensheathing cells and their precursors, and neuronal nestin+ and Mash1+ progenitors. Combining gain and loss of function for FGF2 activity in a novel in vitro clonal progenitor assay, we reveal that different colony phenotypes are formed by presumably different OE progenitors. FGF2 is essential for the survival and expansion of colony-forming cells of the OE, and also enhances the proliferation of embryonic Mash1+ progenitors, leading to long-lived enhancement of neurogenesis. Our data suggest that distinct OE progenitors yield different in vitro phenotypes with different potentials, that colony-forming activity is profoundly altered by laminin and collagen, that multiple ORNs can be produced from single colony-forming progenitors, and demonstrate a broader progenitor range of FGF action in the embryonic OE than previously demonstrated.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Neurogênese/fisiologia , Mucosa Olfatória , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco , Quinases da Família src/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem da Célula/fisiologia , Proliferação de Células , Sobrevivência Celular/fisiologia , Proteínas de Filamentos Intermediários/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Nestina , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Mucosa Olfatória/inervação , Células-Tronco/citologia , Células-Tronco/metabolismo
6.
J Comp Neurol ; 520(12): 2575-90, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22173850

RESUMO

SPARC-like 1 (SC1) is a member of the SPARC family of matricellular proteins that has been implicated in the regulation of processes such as cell migration, proliferation, and differentiation. Here we show that SC1 exhibits remarkably diverse and dynamic expression in the developing and adult nervous system. During development, SC1 localizes to radial glia and pial-derived structures, including the vasculature, choroid plexus, and pial membranes. SC1 is not downregulated in postnatal development, but its expression shifts to distinct time windows in subtypes of glia and neurons, including astrocytes, large projection neurons, Bergmann glia, Schwann cells, and ganglionic satellite cells. In addition, SC1 expression levels and patterns are not altered in the SPARC null mouse, suggesting that SC1 does not compensate for the absence of SPARC. We conclude that SC1 and SPARC may share significant homology, but are likely to have distinct but complementary roles in nervous system development.


Assuntos
Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Osteonectina/deficiência , Osteonectina/metabolismo , Animais , Proteínas de Ligação ao Cálcio/genética , Cerebelo/citologia , Cerebelo/embriologia , Cerebelo/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/fisiologia , Proteínas da Matriz Extracelular/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Osteonectina/genética , Homologia de Sequência de Aminoácidos
7.
PLoS One ; 6(9): e24538, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21931744

RESUMO

Radial glia (RG) are primarily embryonic neuroglial progenitors that express Brain Lipid Binding Protein (Blbp a.k.a. Fabp7) and Glial Fibrillary Acidic Protein (Gfap). We used these transcripts to demarcate the distribution of spinal cord radial glia (SCRG) and screen for SCRG gene expression in the Allen Spinal Cord Atlas (ASCA). We reveal that neonatal and adult SCRG are anchored in a non-ventricular niche at the spinal cord (SC) pial boundary, and express a "signature" subset of 122 genes, many of which are shared with "classic" neural stem cells (NSCs) of the subventricular zone (SVZ) and SC central canal (CC). A core expressed gene set shared between SCRG and progenitors of the SVZ and CC is particularly enriched in genes associated with human disease. Visualizing SCRG in a Fabp7-EGFP reporter mouse reveals an extensive population of SCRG that extend processes around the SC boundary and inwardly (through) the SC white matter (WM), whose abundance increases in a gradient from cervical to lumbar SC. Confocal analysis of multiple NSC-enriched proteins reveals that postnatal SCRG are a discrete and heterogeneous potential progenitor population that become activated by multiple SC lesions, and that CC progenitors are also more heterogeneous than previously appreciated. Gene ontology analysis highlights potentially unique regulatory pathways that may be further manipulated in SCRG to enhance repair in the context of injury and SC disease.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neuroglia/patologia , Medula Espinal/patologia , Células-Tronco/citologia , Animais , Doenças Autoimunes/patologia , Encefalomielite/metabolismo , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo/metabolismo , Perfilação da Expressão Gênica , Proteína Glial Fibrilar Ácida/biossíntese , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Fenótipo , Medula Espinal/citologia , Traumatismos da Medula Espinal/patologia
8.
J Neurosci Res ; 88(13): 2833-46, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20568293

RESUMO

The failure of CNS axons to regenerate following traumatic injury is due in part to a growth-inhibitory environment in CNS as well as a weak intrinsic neuronal growth response. Olfactory ensheathing cell (OECs) transplants have been reported to create a favorable environment promoting axonal regeneration, remyelination, and functional recovery after spinal cord injury. However, in our previous experiments, OEC transplants failed to promote regeneration of rubrospinal axons through and beyond the site of a dorsolateral funiculus crush in rats. Rubrospinal neurons undergo massive cell atrophy and limited expression of regeneration-associated genes after axotomy. Using the same injury model, we tested the hypothesis that treatment of the red nucleus with cAMP, known to stimulate the intrinsic growth response in other neurons, will promote rubrospinal regeneration in combination with OEC transplants. In addition, we assessed a systemic increase of cAMP using the phosphodiesterase inhibitor rolipram. OECs prevented cavity formation, attenuated astrocytic hypertrophy and the retraction of the axotomized rubrospinal axons, and tended to reduce the overall lesion size. OEC transplantation lowered the thresholds for thermal sensitivity of both forepaws. None of our treatments, alone or in combination, promoted rubrospinal regeneration through the lesion site. However, the systemic elevation of cAMP with rolipram resulted in greater numbers of OECs and axonal density within the graft and improved motor performance in a cylinder test in conjunction with enhanced rubrospinal branching and attenuated astrocytic hypertrophy.


Assuntos
Transplante de Células/métodos , AMP Cíclico/uso terapêutico , Bulbo Olfatório/citologia , Células de Schwann/transplante , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Animais , Axônios/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Fluorescência Verde/genética , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Camundongos , Camundongos Transgênicos , Movimento/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Bulbo Olfatório/metabolismo , Bulbo Olfatório/transplante , Inibidores de Fosfodiesterase/uso terapêutico , Estimulação Física/métodos , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Rolipram/uso terapêutico , Limiar Sensorial/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Estatística como Assunto
9.
Mol Cell Neurosci ; 44(1): 55-67, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20188178

RESUMO

DNA methylation-dependent gene silencing is initiated by DNA methyltransferases (DNMTs) and mediated by methyl-binding domain proteins (MBDs), which recruit histone deacetylases (HDACs) to silence DNA, a process that is essential for normal development. Here, we show that the MBD proteins MBD2 and MeCP2 regulate distinct transitional stages of olfactory receptor neuron (ORN) differentiation in vivo. Mbd2 null progenitors display enhanced proliferation, recapitulated by HDAC inhibition, and Mbd2 null ORNs have a decreased lifespan. Mecp2 null ORNs, on the other hand, temporarily stall at the stage of terminal differentiation, retaining expression of the immature neuronal protein GAP43 after initiating expression of mature neuronal genes. The Gap43 promoter is highly methylated in the mature, but not embryonic olfactory epithelium (OE), suggesting that Gap43 may be regulated by DNA methylation during ORN differentiation. Thus, MBD2 and MeCP2 may mediate distinct, sequential transitions of ORN differentiation-an epigenetic mechanism that may be relevant to developmental regulation throughout the nervous system.


Assuntos
Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Proteína 2 de Ligação a Metil-CpG/genética , Mucosa Olfatória/embriologia , Mucosa Olfatória/crescimento & desenvolvimento , Neurônios Receptores Olfatórios/metabolismo , Animais , Proliferação de Células , Metilação de DNA/fisiologia , Epigênese Genética/genética , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Inativação Gênica/fisiologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Regiões Promotoras Genéticas/genética
10.
Prog Neurobiol ; 88(3): 170-83, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19554713

RESUMO

Alterations in the epigenetic modulation of gene expression have been implicated in several developmental disorders, cancer, and recently, in a variety of mental retardation and complex psychiatric disorders. A great deal of effort is now being focused on why the nervous system may be susceptible to shifts in activity of epigenetic modifiers. The answer may simply be that the mammalian nervous system must first produce the most complex degree of developmental patterning in biology and hardwire cells functionally in place postnatally, while still allowing for significant plasticity in order for the brain to respond to a rapidly changing environment. DNA methylation and histone deacetylation are two major epigenetic modifications that contribute to the stability of gene expression states. Perturbing DNA methylation, or disrupting the downstream response to DNA methylation - methyl-CpG-binding domain proteins (MBDs) and histone deacetylases (HDACs) - by genetic or pharmacological means, has revealed a critical requirement for epigenetic regulation in brain development, learning, and mature nervous system stability, and has identified the first distinct gene sets that are epigenetically regulated within the nervous system. Epigenetically modifying chromatin structure in response to different stimuli appears to be an ideal mechanism to generate continuous cellular diversity and coordinate shifts in gene expression at successive stages of brain development - all the way from deciding which kind of a neuron to generate, through to how many synapses a neuron can support. Here, we review the evidence supporting a role for DNA methylation and histone deacetylation in nervous system development and mature function, and present a basis from which to understand how the clinical use of HDAC inhibitors may impact nervous system function.


Assuntos
Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Sistema Nervoso/crescimento & desenvolvimento , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Histona Desacetilases/genética , Histonas/genética , Humanos
11.
J Neurosci Res ; 87(10): 2222-36, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19301432

RESUMO

Elucidating the mechanisms that regulate the survival and outgrowth of corticospinal tract (CST) neurons and other CNS tracts will be a key component in developing novel approaches for the treatment of central nervous system (CNS) disorders, including stroke, spinal cord injury (SCI), and motor neuron disease (MND). However, the in vivo complexities of these diseases make a systematic evaluation of potential therapeutics that directly affect corticospinal regeneration or survival very challenging. Here, we use Thy1.2 transgenic mice expressing yellow fluorescent protein (YFP) in postnatal day 8 (P8) corticospinal neurons, as a source of CST neurons that have already established synapses in the spinal cord, to assess factors that influence neurite outgrowth and survival of axotomized CST neurons. After culture, YFP-positive corticospinal neurons represent an enriched neuronal population over other glia and interneurons, survive, and extend processes over time. YFP-positive CST neurons also continue to express the corticospinal markers CTIP2 and Otx1. CST neurons display different degrees of axon extension, dendritic branch length and elaboration, and neurite elongation in response to neurotrophin-3 and ciliary neurotrophic factor, and an inhibitory outgrowth response when cultured on myelin-associated glycoprotein. Some CST neurons are lost with extended culture, which provides a baseline from which we can also assess factors that enhance CST neuron survival. This assay thus allows us to assess independent aspects of CST axonal and dendritic outgrowth kinetics, which allows for the rapid and sensitive investigation of new therapies to address corticospinal neuron outgrowth in the context of CNS injury and neurodegenerative disorders.


Assuntos
Diferenciação Celular/fisiologia , Glicoproteína Associada a Mielina/farmacologia , Fatores de Crescimento Neural/farmacologia , Neurônios/efeitos dos fármacos , Tratos Piramidais/citologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células CHO , Morte Celular , Células Cultivadas , Cricetinae , Cricetulus , Genótipo , Técnicas In Vitro , Proteínas Luminescentes/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/citologia , Antígenos Thy-1/genética , Fatores de Tempo
12.
Eur J Neurosci ; 28(9): 1795-807, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18973595

RESUMO

Transplantations of olfactory ensheathing cells (OECs) have been reported to promote axonal regeneration and functional recovery after spinal cord injury, but have demonstrated limited growth promotion of rat rubrospinal axons after a cervical dorsolateral funiculus crush. Rubrospinal neurons undergo massive atrophy after cervical axotomy and show only transient expression of regeneration-associated genes. Cell body treatment with brain-derived neurotrophic factor (BDNF) prevents this atrophy, stimulates regeneration-associated gene expression and promotes regeneration of rubrospinal axons into peripheral nerve transplants. Here, we hypothesized that the failure of rubrospinal axons to regenerate through a bridge of OEC transplants was due to this weak intrinsic cell body response. Hence, we combined BDNF treatment of rubrospinal neurons with transplantation of highly enriched OECs derived from the nasal mucosa and assessed axonal regeneration as well as behavioral changes after a cervical dorsolateral funiculus crush. Each treatment alone as well as their combination prevented the dieback of the rubrospinal axons, but none of them promoted rubrospinal regeneration beyond the lesion/transplantation site. Motor performance in a food-pellet reaching test and forelimb usage during vertical exploration (cylinder test) were more impaired after combining transplantation of OECs with BDNF treatment. This impaired motor performance correlated with lowered sensory thresholds in animals receiving the combinatorial therapy - which were not seen with each treatment alone. Only this combinatorial treatment group showed enhanced sprouting of calcitonin gene-related peptide-positive axons rostral to the lesion site. Hence, some combinatorial treatments, such as OECs with BDNF, may have undesired effects in the injured spinal cord.


Assuntos
Transplante de Tecido Encefálico/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo/efeitos adversos , Neuroglia/transplante , Núcleo Rubro/efeitos dos fármacos , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/cirurgia , Animais , Axotomia/efeitos adversos , Células Cultivadas , Modelos Animais de Doenças , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/lesões , Vias Eferentes/fisiopatologia , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Cones de Crescimento/ultraestrutura , Masculino , Camundongos , Camundongos Transgênicos , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/fisiopatologia , Transtornos dos Movimentos/cirurgia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Neuroglia/citologia , Neuroglia/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Bulbo Olfatório/citologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/transplante , Ratos , Ratos Sprague-Dawley , Núcleo Rubro/fisiopatologia , Degeneração Retrógrada/tratamento farmacológico , Degeneração Retrógrada/fisiopatologia , Degeneração Retrógrada/prevenção & controle , Limiar Sensorial/fisiologia , Traumatismos da Medula Espinal/fisiopatologia
13.
Dev Dyn ; 237(8): 2256-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18651664

RESUMO

The deacetylation of histone proteins, catalyzed by histone deacetylases (HDACs), is a common epigenetic modification of chromatin, associated with gene silencing. Although HDAC inhibitors are used clinically to treat nervous system disorders, such as epilepsy, very little is known about the expression pattern of the HDACs in the central nervous system. Identifying the cell types and developmental stages that express HDAC1 and HDAC2 within the brain is important for determining the therapeutic mode of action of HDAC inhibitors, and evaluating potential side effects. Here, we examined the expression of HDAC1 and HDAC2 in the murine brain at multiple developmental ages. HDAC1 is expressed in neural stem cells/progenitors and glia. In contrast, HDAC2 is initiated in neural progenitors and is up-regulated in post-mitotic neuroblasts and neurons, but not in fully differentiated glia. These results identify key developmental stages of HDAC expression and suggest transitions of neural development that may utilize HDAC1 and/or HDAC2.


Assuntos
Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Histona Desacetilases/genética , Proteínas Repressoras/genética , Fatores Etários , Animais , Encéfalo/citologia , Diferenciação Celular/fisiologia , Histona Desacetilase 1 , Histona Desacetilase 2 , Histona Desacetilases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Neuroglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Células-Tronco/fisiologia , Regulação para Cima/fisiologia
14.
J Neurosci ; 28(16): 4271-82, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18417707

RESUMO

Persistent neurogenesis is maintained throughout development and adulthood in the mouse olfactory epithelium (OE). Despite this, the identity and origin of different embryonic OE progenitors, their spatiotemporal induction and contribution to patterning during development, has yet to be delineated. Here, we show that the embryonic OE contains a novel nestin-expressing radial glia-like progenitor (RGLP) that is not found in adult OE, which is antigenically distinct from embryonic CNS radial glia. Nestin-cre-mediated lineage tracing with three different reporters reveals that only a subpopulation of nestin-expressing RGLPs activate "CNS-specific" nestin regulatory elements, and produce spatially restricted olfactory receptor neurons (ORNs) in zone 1 of the OE, and vomeronasal receptor neurons restricted to the VR1 zone. This dorsal-medial restriction of transgene-activating cells is also seen in the embryonic OE of Nestin-GFP transgenic mice, in which green fluorescent protein (GFP) is found in a subpopulation of GFP+Mash1+ neuronal progenitors, despite the fact that endogenous Nestin expression is found in RGLPs throughout the OE. Embryonic OE progenitors produce three biologically distinct colony subtypes in vitro, a subpopulation of which include nestin-expressing RGLPs during in vitro colony formation. When generated from Nestin-cre/ZEG mice, neurogenic colonies also produce GFP+Mash1+ progenitors and ORNs. We thus identify a novel neurogenic precursor, the RGLP of the OE and vomeronasal organ (VNO), and provide the first evidence for intrinsic differences in the origin and spatiotemporal potential of distinct progenitors during development of the OE and VNO.


Assuntos
Proteínas de Filamentos Intermediários/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neuroglia/metabolismo , Neurônios/metabolismo , Mucosa Olfatória/metabolismo , Células-Tronco/metabolismo , Órgão Vomeronasal/metabolismo , Animais , Animais Recém-Nascidos , Diferenciação Celular/fisiologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Filamentos Intermediários/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Nestina , Neuroglia/citologia , Neurônios/citologia , Mucosa Olfatória/citologia , Mucosa Olfatória/embriologia , Células-Tronco/citologia , Órgão Vomeronasal/citologia , Órgão Vomeronasal/embriologia
15.
Dev Dyn ; 237(5): 1449-62, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18366138

RESUMO

SPARC (secreted protein, acidic and rich in cysteine) is a matricellular protein that is highly expressed during development, tissue remodeling, and repair. SPARC produced by olfactory ensheathing cells (OECs) can promote axon sprouting in vitro and in vivo. Here, we show that in the developing nervous system of the mouse, SPARC is expressed by radial glia, blood vessels, and other pial-derived structures during embryogenesis and postnatal development. The rostral migratory stream contains SPARC that becomes progressively restricted to the SVZ in adulthood. In the adult CNS, SPARC is enriched in specialized radial glial derivatives (Müller and Bergmann glia), microglia, and brainstem astrocytes. The peripheral glia, Schwann cells, and OECs express SPARC throughout development and in maturity, although it appears to be down-regulated with maturation. These data suggest that SPARC may be expressed by glia in a spatiotemporal manner consistent with a role in cell migration, neurogenesis, synaptic plasticity, and angiogenesis.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central , Regulação da Expressão Gênica no Desenvolvimento , Microglia/metabolismo , Oligodendroglia/metabolismo , Osteonectina/metabolismo , Animais , Astrócitos/citologia , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microglia/citologia , Morfogênese/fisiologia , Oligodendroglia/citologia , Osteonectina/genética
16.
Methods Mol Biol ; 438: 85-94, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369751

RESUMO

Olfactory ensheathing cells (OECs), which are glia from the olfactory system, have evolved as attractive candidates for transplant-mediated repair based on long-standing knowledge that the olfactory system is one of the only central nervous system tissues that can support neurogenesis throughout life. After injury and during normal cell turnover, the olfactory receptor neurons (ORNs) die, and new nerves are generated from putative stem cells in the olfactory epithelium. OECs, which reside throughout the olfactory system, guide the ORN axons as they travel through the olfactory mucosa (olfactory epithelium and lamina propria) and the cribriform plate, terminating in synapse formation in the usually nonpermissive environment of the olfactory bulb. It is this ability to support axonal outgrowth throughout life that has made olfactory tissue such a promising focus for repair strategies. Here, we provide a method to purify OECs-from the rat olfactory bulb and in Chapter 9, from the turbinates of the mouse olfactory epithelium.


Assuntos
Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Bulbo Olfatório/citologia , Animais , Animais Recém-Nascidos , Astrócitos/citologia , Células Cultivadas , Dissecação , Células Epiteliais/citologia , Citometria de Fluxo , Mucosa Olfatória/citologia , Ratos
17.
Methods Mol Biol ; 438: 95-102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18369752

RESUMO

Olfactory ensheathing cells (OECs) are not a class of stem cell, but they are a specialized and highly plastic glial cell that can continuously support the neurogenesis and axonal regeneration of olfactory receptor neurons. Because of this, they have been transplanted into sites of spinal cord injury to test their efficacy in promoting repair. They also have been demonstrated to have some ability to support the remyelination of demyelinated axons. Although the majority of these transplantation studies have used OECs prepared from the olfactory bulb (OB-OECs), OECs also can be prepared from the olfactory mucosa, and they are thus a candidate peripherally accessible population of glia that may be effective in promoting repair in a variety of central nervous system lesions. This protocol is designed to produce a highly enriched population of OECs from the lamina propria (LP) of the olfactory mucosa (LP-OECs), which are antigenically similar to OB-OECs and bear some phenotypic similarities to embryonic Schwann cells, but may demonstrate some distinct functional differences.


Assuntos
Técnicas de Cultura de Células/métodos , Mucosa Olfatória/citologia , Animais , Morte Celular , Células Cultivadas , Dissecação , Fibroblastos/citologia , Camundongos , Fenótipo
18.
Exp Neurol ; 209(2): 353-67, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17643431

RESUMO

Olfactory ensheathing cells (OECs) are unique glia found only in the olfactory system that retain exceptional plasticity, and support olfactory neurogenesis and the re-targeting across the PNS:CNS boundary in the olfactory system. Because they are also relatively accessible in an adult rodent or human, OECs have become a prime candidate for cell-mediated repair following a variety of CNS lesions. A number of different labs across the world have applied OECs prepared in many different ways in several different acute and chronic models of rodent SCI, some of which have suggested surprising degrees of functional recovery. OECs can stimulate tissue sparing and neuroprotection, enhance outgrowth of both intact and lesioned axons (to different degrees), activate angiogenesis, change the response status of endogenous glia after lesion and remyelinate axons after a range of demyelinating insults. Their ability to stimulate regeneration in specific tracts is, however, limited. Despite this, the ongoing clinical use of cell preparations containing OECs has proceeded as a therapeutic approach for human spinal cord injury (SCI). Here, we review the current status of OEC research in SCI, and focus on potential mechanisms for OECs in the SCI repair response that may help to explain the biological reasons underlying the wide variation of results obtained in this promising, yet contentious, field.


Assuntos
Transplante de Células/métodos , Bulbo Olfatório/citologia , Células de Schwann/transplante , Traumatismos da Medula Espinal/terapia , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Células de Schwann/efeitos dos fármacos
19.
J Mol Histol ; 38(6): 581-99, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17851769

RESUMO

The rodent olfactory epithelium (OE) is capable of prolonged neurogenesis, beginning at E10 in the embryo and continuing throughout adulthood. Significant progress has been made over the last 10 years in revealing the signals that drive induction, differentiation and survival of its Olfactory Receptor Neurons (ORNs). Our understanding of the identity of specific progenitors or precursors that respond to these signals is, however, less well developed, and the search is still on for the elusive, definitive multipotent neuro-glial OE "Stem cell". Here, we review several lines of evidence that support the existence of a heterogeneous population of neural and glial progenitors in the olfactory mucosa, and highlight the differences in the identity and activity of progenitors found in the embryonic and adult OE. In particular, we show how recent advances in mouse transgenesis, and in the development of in vitro assays of progenitor activity, have helped to demonstrate the existence of multiple classes of olfactory mucosa-based progenitors.


Assuntos
Células-Tronco Multipotentes/fisiologia , Mucosa Olfatória/citologia , Neurônios Receptores Olfatórios/citologia , Antígeno AC133 , Animais , Antígenos CD/análise , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Diferenciação Celular , Células Cultivadas , Glicoproteínas/análise , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Filamentos Intermediários/análise , Camundongos , Camundongos Transgênicos , Células-Tronco Multipotentes/citologia , Proteínas do Tecido Nervoso/análise , Nestina , Bulbo Olfatório/citologia , Bulbo Olfatório/embriologia , Bulbo Olfatório/fisiologia , Proteína de Marcador Olfatório/metabolismo , Mucosa Olfatória/embriologia , Mucosa Olfatória/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Peptídeos/análise , Antígeno Nuclear de Célula em Proliferação/análise
20.
J Neurosci ; 27(27): 7208-21, 2007 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-17611274

RESUMO

Olfactory ensheathing cells (OECs) transplanted into the lesioned CNS can stimulate reportedly different degrees of regeneration, remyelination, and functional recovery, but little is known about the mechanisms OECs may use to stimulate endogenous repair. Here, we used a functional proteomic approach, isotope-coded affinity tagging and mass spectrometry, to identify active components of the OEC secreteome that differentially stimulate outgrowth. SPARC (secreted protein acidic rich in cysteine) (osteonectin) was identified as an OEC-derived matricellular protein that can indirectly enhance the ability of Schwann cells to stimulate dorsal root ganglion outgrowth in vitro. SPARC stimulates Schwann cell-mediated outgrowth by cooperative signal with laminin-1 and transforming growth factor beta. Furthermore, when SPARC-null OECs were transplanted into lesioned rat spinal cord, the absence of OEC-secreted SPARC results in an attenuation of outgrowth of specific subsets of sensory and supraspinal axons and changes the pattern of macrophage infiltration in response to the transplanted cells. These data provide the first evidence for a role for SPARC in modulating different aspects of CNS repair and indicate that SPARC can change the activation state of endogenous Schwann cells, resulting in the promotion of outgrowth in vitro, and in vivo.


Assuntos
Neuritos/fisiologia , Bulbo Olfatório/metabolismo , Osteonectina/metabolismo , Células de Schwann/fisiologia , Traumatismos da Medula Espinal/terapia , Animais , Bovinos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuritos/efeitos dos fármacos , Bulbo Olfatório/citologia , Bulbo Olfatório/transplante , Osteonectina/uso terapêutico , Ratos , Ratos Sprague-Dawley , Células de Schwann/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...