Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 20(9): e3001782, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36070319

RESUMO

In metazoa, cilia assembly is a cellular process that starts with centriole to basal body maturation, migration to the cell surface, and docking to the plasma membrane. Basal body docking involves the interaction of both the distal end of the basal body and the transition fibers/distal appendages, with the plasma membrane. Mutations in numerous genes involved in basal body docking and transition zone assembly are associated with the most severe ciliopathies, highlighting the importance of these events in cilium biogenesis. In this context, the ciliate Paramecium has been widely used as a model system to study basal body and cilia assembly. However, despite the evolutionary conservation of cilia assembly events across phyla, whether the same molecular players are functionally conserved, is not fully known. Here, we demonstrated that CEP90, FOPNL, and OFD1 are evolutionary conserved proteins crucial for ciliogenesis. Using ultrastructure expansion microscopy, we unveiled that these proteins localize at the distal end of both centrioles/basal bodies in Paramecium and mammalian cells. Moreover, we found that these proteins are recruited early during centriole duplication on the external surface of the procentriole. Functional analysis performed both in Paramecium and mammalian cells demonstrate the requirement of these proteins for distal appendage assembly and basal body docking. Finally, we show that mammalian centrioles require another component, Moonraker (MNR), to recruit OFD1, FOPNL, and CEP90, which will then recruit the distal appendage proteins CEP83, CEP89, and CEP164. Altogether, we propose that this OFD1, FOPNL, and CEP90 functional module is required to determine in mammalian cells the future position of distal appendage proteins.


Assuntos
Centríolos/metabolismo , Cílios/ultraestrutura , Paramecium/metabolismo , Animais , Membrana Celular , Centríolos/química , Cílios/metabolismo , Mamíferos , Paramecium/química , Paramecium/citologia
2.
J Cell Sci ; 135(4)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35067717

RESUMO

Ciliated epithelia perform essential functions in animals across evolution, ranging from locomotion of marine organisms to mucociliary clearance of airways in mammals. These epithelia are composed of multiciliated cells (MCCs) harboring myriads of motile cilia, which rest on modified centrioles called basal bodies (BBs), and beat coordinately to generate directed fluid flows. Thus, BB biogenesis and organization is central to MCC function. In basal eukaryotes, the coiled-coil domain proteins Lrrcc1 and Ccdc61 have previously been shown to be required for proper BB construction and function. Here, we used the Xenopus embryonic ciliated epidermis to characterize Lrrcc1 and Ccdc61 in vertebrate MCCs. We found that they both encode BB components, localized proximally at the junction with striated rootlets. Knocking down either gene caused defects in BB docking, spacing and polarization. Moreover, their depletion impaired the apical cytoskeleton and altered ciliary beating. Consequently, cilia-powered fluid flow was greatly reduced in morphant tadpoles, which displayed enhanced mortality when exposed to pathogenic bacteria. This work illustrates how integration across organizational scales make elementary BB components essential for the emergence of the physiological function of ciliated epithelia.


Assuntos
Corpos Basais , Cílios , Animais , Corpos Basais/metabolismo , Diferenciação Celular/fisiologia , Centríolos , Cílios/metabolismo , Xenopus laevis
3.
Nat Commun ; 9(1): 4668, 2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30405130

RESUMO

Multiciliated cells (MCCs) harbor dozens to hundreds of motile cilia, which generate hydrodynamic forces important in animal physiology. In vertebrates, MCC differentiation involves massive centriole production by poorly characterized structures called deuterosomes. Here, single-cell RNA sequencing reveals that human deuterosome stage MCCs are characterized by the expression of many cell cycle-related genes. We further investigated the uncharacterized vertebrate-specific cell division cycle 20B (CDC20B) gene, which hosts microRNA-449abc. We show that CDC20B protein associates to deuterosomes and is required for centriole release and subsequent cilia production in mouse and Xenopus MCCs. CDC20B interacts with PLK1, a kinase known to coordinate centriole disengagement with the protease Separase in mitotic cells. Strikingly, over-expression of Separase rescues centriole disengagement and cilia production in CDC20B-deficient MCCs. This work reveals the shaping of deuterosome-mediated centriole production in vertebrate MCCs, by adaptation of canonical and recently evolved cell cycle-related molecules.


Assuntos
Proteínas Cdc20/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Animais , Epêndima/metabolismo , Epiderme/metabolismo , Feminino , Humanos , Camundongos , Ligação Proteica , Separase/metabolismo , Análise de Célula Única , Transcriptoma/genética , Vertebrados/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo
4.
Hum Mol Genet ; 27(19): 3377-3391, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982567

RESUMO

Skeletal dysplasias are a clinically and genetically heterogeneous group of bone and cartilage disorders. A total of 436 skeletal dysplasias are listed in the 2015 revised version of the nosology and classification of genetic skeletal disorders, of which nearly 20% are still genetically and molecularly uncharacterized. We report the clinical and molecular characterization of a lethal skeletal dysplasia of the short-rib group caused by mutation of the mouse Fop gene. Fop encodes a centrosomal and centriolar satellite (CS) protein. We show that Fop mutation perturbs ciliogenesis in vivo and that this leads to the alteration of the Hedgehog signaling pathway. Fop mutation reduces CSs movements and affects pericentriolar material composition, which probably participates to the ciliogenesis defect. This study highlights the role of a centrosome and CSs protein producing phenotypes in mice that recapitulate a short rib-polydactyly syndrome when mutated.


Assuntos
Ciliopatias/genética , Proteínas Proto-Oncogênicas/genética , Síndrome de Costela Curta e Polidactilia/genética , Fatores de Transcrição/genética , Animais , Centríolos/genética , Centrossomo/metabolismo , Centrossomo/patologia , Cílios/genética , Cílios/patologia , Ciliopatias/fisiopatologia , Humanos , Camundongos , Mutação , Síndrome de Costela Curta e Polidactilia/fisiopatologia
5.
J Med Genet ; 54(6): 371-380, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28289185

RESUMO

Oral-facial-digital syndromes (OFDS) gather rare genetic disorders characterised by facial, oral and digital abnormalities associated with a wide range of additional features (polycystic kidney disease, cerebral malformations and several others) to delineate a growing list of OFDS subtypes. The most frequent, OFD type I, is caused by a heterozygous mutation in the OFD1 gene encoding a centrosomal protein. The wide clinical heterogeneity of OFDS suggests the involvement of other ciliary genes. For 15 years, we have aimed to identify the molecular bases of OFDS. This effort has been greatly helped by the recent development of whole-exome sequencing (WES). Here, we present all our published and unpublished results for WES in 24 cases with OFDS. We identified causal variants in five new genes (C2CD3, TMEM107, INTU, KIAA0753 and IFT57) and related the clinical spectrum of four genes in other ciliopathies (C5orf42, TMEM138, TMEM231 and WDPCP) to OFDS. Mutations were also detected in two genes previously implicated in OFDS. Functional studies revealed the involvement of centriole elongation, transition zone and intraflagellar transport defects in OFDS, thus characterising three ciliary protein modules: the complex KIAA0753-FOPNL-OFD1, a regulator of centriole elongation; the Meckel-Gruber syndrome module, a major component of the transition zone; and the CPLANE complex necessary for IFT-A assembly. OFDS now appear to be a distinct subgroup of ciliopathies with wide heterogeneity, which makes the initial classification obsolete. A clinical classification restricted to the three frequent/well-delineated subtypes could be proposed, and for patients who do not fit one of these three main subtypes, a further classification could be based on the genotype.


Assuntos
Face/anormalidades , Síndromes Orofaciodigitais/genética , Anormalidades Múltiplas/genética , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Feminino , Heterozigoto , Humanos , Masculino , Mutação/genética , Doenças Renais Policísticas/genética , Proteínas/genética , Retinose Pigmentar
6.
Hum Mol Genet ; 25(3): 497-513, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26643951

RESUMO

Oral-facial-digital (OFD) syndromes are rare heterogeneous disorders characterized by the association of abnormalities of the face, the oral cavity and the extremities, some due to mutations in proteins of the transition zone of the primary cilia or the closely associated distal end of centrioles. These two structures are essential for the formation of functional cilia, and for signaling events during development. We report here causal compound heterozygous mutations of KIAA0753/OFIP in a patient with an OFD VI syndrome. We show that the KIAA0753/OFIP protein, whose sequence is conserved in ciliated species, associates with centrosome/centriole and pericentriolar satellites in human cells and forms a complex with FOR20 and OFD1. The decreased expression of any component of this ternary complex in RPE1 cells causes a defective recruitment onto centrosomes and satellites. The OFD KIAA0753/OFIP mutant loses its capacity to interact with FOR20 and OFD1, which may be the molecular basis of the defect. We also show that KIAA0753/OFIP has microtubule-stabilizing activity. OFD1 and FOR20 are known to regulate the integrity of the centriole distal end, confirming that this structural element is a target of importance for pathogenic mutations in ciliopathies.


Assuntos
Centríolos/metabolismo , Centrossomo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Síndromes Orofaciodigitais/metabolismo , Proteínas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Cílios/genética , Cílios/metabolismo , Cílios/patologia , Sequência Conservada , Feminino , Expressão Gênica , Heterozigoto , Humanos , Recém-Nascido , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutação , Síndromes Orofaciodigitais/genética , Síndromes Orofaciodigitais/patologia , Ligação Proteica , Proteínas/genética , Alinhamento de Sequência
7.
Biol Open ; 2(2): 238-50, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23430395

RESUMO

The generation of cellular microtubules is initiated at specific sites such as the centrosome and the Golgi apparatus that contain nucleation complexes rich in γ-tubulin. The microtubule growing plus-ends are stabilized by plus-end tracking proteins (+TIPs), mainly EB1 and associated proteins. Myomegalin was identified as a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterase. We show here that Myomegalin exists as several isoforms. We characterize two of them. One isoform, CM-MMG, harbors a conserved domain (CM1), recently described as a nucleation activator, and is related to a family of γ-tubulin binding proteins, which includes Drosophila centrosomin. It localizes at the centrosome and at the cis-Golgi in an AKAP450-dependent manner. It recruits γ-tubulin nucleating complexes and promotes microtubule nucleation. The second isoform, EB-MMG, is devoid of CM1 domain and has a unique N-terminus with potential EB1-binding sites. It localizes at the cis-Golgi and can localize to microtubule plus-ends. EB-MMG binds EB1 and affects its loading on microtubules and microtubule growth. Depletion of Myomegalin by small interfering RNA delays microtubule growth from the centrosome and Golgi apparatus, and decreases directional migration of RPE1 cells. In conclusion, the Myomegalin gene encodes different isoforms that regulate microtubules. At least two of these have different roles, demonstrating a previously unknown mechanism to control microtubules in vertebrate cells.

8.
J Cell Sci ; 125(Pt 18): 4395-404, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22718349

RESUMO

Within the FOP family of centrosomal proteins, the conserved FOR20 protein has been implicated in the control of primary cilium assembly in human cells. To ascertain its role in ciliogenesis, we have investigated the function of its ortholog, PtFOR20p, in the multiciliated unicellular organism Paramecium. Using combined functional and cytological analyses, we found that PtFOR20p specifically localises at basal bodies and is required to build the transition zone, a prerequisite to their maturation and docking at the cell surface and hence to ciliogenesis. We also found that PtCen2p (one of the two basal body specific centrins, an ortholog of HsCen2) is required to recruit PtFOR20p at the developing basal body and to control its length. By contrast, the other basal-body-specific centrin PtCen3p is not needed for assembly of the transition zone, but is required downstream, for basal body docking. Comparison of the structural defects induced by depletion of PtFOR20p, PtCen2p or PtCen3p, respectively, illustrates the dual role of the transition zone in the biogenesis of the basal body and in cilium assembly. The multiple potential roles of the transition zone during basal body biogenesis and the evolutionary conserved function of the FOP proteins in microtubule membrane interactions are discussed.


Assuntos
Membrana Celular/metabolismo , Centrossomo/metabolismo , Sequência Conservada , Paramecium/citologia , Paramecium/metabolismo , Proteínas de Protozoários/metabolismo , Cílios/metabolismo , Cílios/ultraestrutura , Genes de Protozoários , Proteínas de Fluorescência Verde/metabolismo , Humanos , Paramecium/genética , Paramecium/ultraestrutura , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas Recombinantes de Fusão/metabolismo
9.
J Cell Sci ; 123(Pt 14): 2391-401, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20551181

RESUMO

Cilia and flagella are evolutionary conserved organelles that generate fluid movement and locomotion, and play roles in chemosensation, mechanosensation and intracellular signalling. In complex organisms, cilia are highly diversified, which allows them to perform various functions; however, they retain a 9+0 or 9+2 microtubules structure connected to a basal body. Here, we describe FOR20 (FOP-related protein of 20 kDa), a previously uncharacterized and highly conserved protein that is required for normal formation of a primary cilium. FOR20 is found in PCM1-enriched pericentriolar satellites and centrosomes. FOR20 contains a Lis1-homology domain that promotes self-interaction and is required for its satellite localization. Inhibition of FOR20 expression in RPE1 cells decreases the percentage of ciliated cells and the length of the cilium on ciliated cells. It also modifies satellite distribution, as judged by PCM1 staining, and displaces PCM1 from a detergent-insoluble to a detergent-soluble fraction. The subcellular distribution of satellites is dependent on both microtubule integrity and molecular motor activities. Our results suggest that FOR20 could be involved in regulating the interaction of PCM1 satellites with microtubules and motors. The role of FOR20 in primary cilium formation could therefore be linked to its function in regulating pericentriolar satellites. A role for FOR20 at the basal body itself is also discussed.


Assuntos
Centrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cílios/metabolismo , Proteínas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Autoantígenos/genética , Autoantígenos/imunologia , Autoantígenos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/genética , Linhagem Celular Transformada , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/imunologia , Cílios/patologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Hibridomas , Microtúbulos/metabolismo , Microtúbulos/patologia , Filogenia , Engenharia de Proteínas , Proteínas/genética , RNA Interferente Pequeno/genética , Ratos , Epitélio Pigmentado da Retina/imunologia , Epitélio Pigmentado da Retina/patologia
10.
Cell Cycle ; 8(8): 1217-27, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19305129

RESUMO

FOP is a centrosomal protein originally discovered as a fusion partner of FGFR1 in patients with a rare stem cell myeloproliferative disorder. In DT40 chicken lymphocytes, we show that the normal FOP protein localizes at the centrosome throughout the cell cycle and preferentially accumulates at the distal end of the mother centriole. We used homologous recombination in DT40 cells to generate an inducible null mutant for FOP. Loss of FOP induces apoptosis in the G(1) phase of the cell cycle with accumulation of a 32 kDa P53 tumor suppressor isoform and NOXA and FAS transcripts. However, centrosome integrity and microtubule organization are conserved without FOP and mitotic division and cytokinesis are as efficient as in control cells. Our results suggest that FOP is involved in G(1) to S signaling and thus in proliferation/death fate. Several reports show that centrosome alteration can lead to an arrest in G(1) and, possibly, to senescence in a fraction of cells. The phenotype we observed is more severe in FOP null cells. This could be dependent on the cell context or on the efficiency of a knock out that allows the complete disappearance of the target protein and prevents any de novo synthesis. This is an important observation in regard to the current discussion of what consequence centrosome perturbation could have on a cell and shows that a centrosomal protein can be necessary for cell cycle progression and survival.


Assuntos
Proteínas Aviárias/metabolismo , Ciclo Celular , Centrossomo/metabolismo , Animais , Morte Celular , Linhagem Celular , Sobrevivência Celular , Centríolos/metabolismo , Centríolos/ultraestrutura , Centrossomo/ultraestrutura , Galinhas , Fase G1 , Técnicas de Inativação de Genes , Mitose , Mutação/genética , Transporte Proteico , Recombinação Genética/genética , Proteína Supressora de Tumor p53/metabolismo
12.
J Biol Chem ; 279(11): 10228-36, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14670953

RESUMO

The VpreB3 gene product was first characterized as an immunoglobulin (Ig) mu heavy chain-binding protein in mouse precursor B (pre-B) cells. Although its function is unknown, it has been proposed to participate in the assembly and transport of the pre-B cell receptor. We have identified a VpreB3 orthologous gene in chicken that is located close to the immunoglobulin light chain (LC) gene cluster and specifically expressed in the bursa of Fabricius. By overexpressing VpreB3 in the DT40 IgM(+) immature chicken B cell line, we have characterized VpreB3 as an endoplasmic reticulum-resident glycoprotein that binds preferentially to free IgLC. However, binding to IgHC is observed in IgLC-deficient DT40 cells. Interaction of VpreB3 with free IgLC is partly covalent and induces retention of free IgLC in the endoplasmic reticulum, preventing their secretion without affecting IgM surface expression. Our results demonstrate that this evolutionarily conserved molecule may play a role in the regulation of the maturation and secretion of free IgLC in B cells. We discuss possible implications in the regulation of the immune response.


Assuntos
Cadeias Leves de Imunoglobulina/química , Glicoproteínas de Membrana/química , Sequência de Aminoácidos , Animais , Linfócitos B/metabolismo , Linhagem Celular , Galinhas , DNA Complementar/metabolismo , Dimerização , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático , Citometria de Fluxo , Glicosídeo Hidrolases/farmacologia , Complexo de Golgi , Humanos , Immunoblotting , Imunoglobulina M/química , Cinética , Glicoproteínas de Membrana/metabolismo , Camundongos , Microscopia Confocal , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Receptores de Células Precursoras de Linfócitos B , Testes de Precipitina , Ligação Proteica , RNA Mensageiro/metabolismo , Receptores de Antígenos de Linfócitos B , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...