Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 335: 122089, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38616078

RESUMO

As a contribution to expand accessibility in the territory of bio-based nanomaterials, we demonstrate a novel material strategy to convert amorphous xylan preserved in wood biomass to hierarchical assemblies of crystalline nanoxylan on a multi-length scale. By reducing the end group in pressurized hot water extracted (PHWE) xylan to primary alcohol as a xylitol form with borohydride reduction, the endwise-peeling depolymerization is effectively impeded in the alkali-catalyzed hydrolytic cleavage of side substitutions in xylan. Nanoprecipitation by a gradual pH decrease resulted in a stable hydrocolloid dispersion in the form of worm-like nanoclusters assembled with primary crystallites, owing to the self-assembly of debranched xylan driven by strong intra- and inter-chain H-bonds. With evaporation-induced self-assembly, we can further construct the hydrocolloids as dry submicron spheroids of crystalline nanoxylan (CNX) with a high average elastic modulus of 47-83 GPa. Taking the advantage that the chain length and homogeneity of PHWE-xylan can be tailored, a structure-performance correlation was established between the structural order in CNX and the phosphorescent emission of this crystalline biopolymer. Rigid clusterization and high crystallinity that are constructed by strong intra- and inter-molecule interactions within the nanoxylan effectively restrict the molecular motion, thereby promoting the emission of ultralong organic phosphorescence.

2.
ACS Omega ; 9(7): 8266-8273, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38405520

RESUMO

Lead acetate (PbAc2) is a promising precursor salt for large-scale production of perovskite solar cells, as its high solubility in polar solvents enables the use of scalable deposition methods such as inkjet printing and dip coating. In this study, uniform (40-230 nm) PbAc2 thin films were prepared via dip coating under near ambient lab conditions by tuning the PbAc2 precursor concentration. In a second step, these PbAc2 films were converted to methylammonium lead iodide (MAPI) perovskite by immersing them into methylammonium iodide (MAI) solutions. The nucleation and growth processes at play were controlled by altering key parameters, such as air humidity during the lead acetate deposition and MAI concentration when converting the PbAc2 film to MAPI. The research revealed that lead acetate is sensitive toward humidity and can undergo hydroxylation reactions affecting the reproducibility and quality of the produced solar cells. However, drying the PbAc2 films under low relative humidity (<1%) prior to conversion enables the production of high-quality MAPI films without the need of glovebox processing. Furthermore, SEM characterization revealed that the surface coverage of the MAPI film increased significantly with an increase of the MAI concentration at the conversion stage. The resulting morphology of the MAPI films can be explained by a standard nucleation and growth mechanism. Preliminary solar cells were produced using these MAPI films as the active layer. The best performing devices were obtained with a 140 nm thick lead acetate film converted to MAPI using a 12 mg/mL MAI solution, as these parameters resulted in a good surface coverage of the MAPI film. The results show that the methodology holds potential toward large-scale production of perovskite solar cells under near ambient conditions, which substantially simplifies the fabrication and lowers the production costs.

3.
Mater Adv ; 4(24): 6718-6729, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38088949

RESUMO

Organic electrochemical transistors (OECTs) are widely employed in several bioelectronic applications such as biosensors, logic circuits, and neuromorphic engineering, providing a seamless link between the realm of biology and electronics. More specifically, OECTs are endowed with remarkable signal amplification, the ability to operate in an aqueous environment, and the effective transduction of ionic to electrical signals. One main limiting factor preventing OECTs' wide use is the need for microfabrication processes, typically requiring specialized equipment. From this perspective, a robust and cost-effective production protocol to achieve high-performing OECT would be desirable. Herein, a straightforward stencil-printed OECT fabrication procedure is proposed, where the electrical performance can be controlled by adjusting the electronic channel fabrication conditions. An experimental design approach is undertaken to optimize OECT figures of merit by varying key parameters such as the annealing temperature and time, as well as the transistor active channel length. The resulting OECT devices, fabricated through a high-yield, cost-effective, and fast stencil printing technique, feature large transconductance values at low operating voltages. The experimental design allowed for minimizing the threshold voltage (VT = 260 mV) while keeping a high on/off ratio (7 × 103). A signal-to-noise ratio as high as 40 dB was obtained, which is among the highest for OECTs, operating in an aqueous electrolyte operated in a DC mode. An atomic force microscopy (AFM) characterization has been undertaken to analyze the channel morphology in the OECTs, correlating the annealing conditions with the charge transport properties.

4.
Clin Oral Investig ; 27(11): 6865-6877, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37821653

RESUMO

OBJECTIVES: To investigate the impact of simulated gastric acid on the surface properties of lithium disilicate-reinforced glass-ceramics and zirconia-reinforced lithium silicate glass-ceramic after certain polishing and glazing procedures. MATERIALS AND METHODS: Four different types of square-shaped specimens (10 × 10 × 2 mm3, n = 13) were manufactured: lithium disilicate-reinforced glass-ceramic milled and polished (LDS-P); milled, polished, and glazed (LDS-PG); milled, glazed, and no polishing (LDS-G); and milled and polished zirconia-reinforced lithium silicate glass-ceramic (ZR-LS). Specimens were immersed in hydrochloride acid (HCl 0.06 M, pH 1.2) to simulate gastric acid irritation and stored in the acid for 96 h in 37 °C. Specimen weight, surface gloss, Vickers surface microhardness and surface roughness (Ra, Rq, with optical profilometer), and surface roughness on nanometer level (Sq, Sal, Sq/Sal, Sdr, Sds with atomic force microscope) were measured before and after the acid immersion. RESULTS: ZR-LS specimens lost significantly more weight after acid immersion (p = 0.001), also surface microhardness of ZR-LS was significantly reduced (p = 0.001). LDS-G and LDS-PG showed significantly lower surface roughness (Sa, Sq) values compared to LDS-P before (p ≤ 0.99) and after (p ≤ 0.99) acid immersion and ZR-LS after acid immersion (p ≤ 0.99). CONCLUSIONS: Gastric acid challenge affects the surface properties of lithium disilicate-reinforced glass-ceramic and zirconia-reinforced lithium silicate glass-ceramic. Glazing layer provides lower surface roughness, and the glazed surface tends to smoothen after the gastric acid challenge. CLINICAL RELEVANCE: Surface finish of lithium disilicate-reinforced glass-ceramic and zirconia-reinforced lithium silicate glass-ceramic has a clear impact on material's surface properties. Gastric acidic challenge changes surface properties but glazing seems to function as a protective barrier. Nevertheless, also glazing tends to smoothen after heavy gastric acid challenge. Glazing can be highly recommended to all glass-ceramic restorations but especially in patients with gastroesophageal reflux disease (GERD) and eating disorders like bulimia nervosa.


Assuntos
Ácido Gástrico , Lítio , Humanos , Teste de Materiais , Desenho Assistido por Computador , Porcelana Dentária/química , Cerâmica/química , Zircônio/química , Silicatos , Propriedades de Superfície
5.
Biomacromolecules ; 24(8): 3819-3834, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37437256

RESUMO

One-dimensional (1D) nanomaterials of conductive polypyrrole (PPy) are competitive biomaterials for constructing bioelectronics to interface with biological systems. Synergistic synthesis using lignocellulose nanofibrils (LCNF) as a structural template in chemical oxidation of pyrrole with Fe(III) ions facilitates surface-confined polymerization of pyrrole on the nanofibril surface within a submicrometer- and micrometer-scale fibril length. It yields a core-shell nanocomposite of PPy@LCNF, wherein the surface of each individual fibril is coated with a thin nanoscale layer of PPy. A highly positive surface charge originating from protonated PPy gives this 1D nanomaterial a durable aqueous dispersity. The fibril-fibril entanglement in the PPy@LCNFs facilely supported versatile downstream processing, e.g., spray thin-coating on glass, flexible membranes with robust mechanics, or three-dimensional cryogels. A high electrical conductivity in the magnitude of several to 12 S·cm-1 was confirmed for the solid-form PPy@LCNFs. The PPy@LCNFs are electroactive and show potential cycling capacity, encompassing a large capacitance. Dynamic control of the doping/undoping process by applying an electric field combines electronic and ionic conductivity through the PPy@LCNFs. The low cytotoxicity of the material is confirmed in noncontact cell culture of human dermal fibroblasts. This study underpins the promises for this nanocomposite PPy@LCNF as a smart platform nanomaterial in constructing interfacing bioelectronics.


Assuntos
Nanocompostos , Polímeros , Humanos , Polímeros/química , Materiais Biocompatíveis/química , Pirróis/química , Compostos Férricos , Nanocompostos/química , Condutividade Elétrica
6.
Small ; 19(24): e2207085, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36919307

RESUMO

Fabricating bio-latex colloids with core-shell nanostructure is an effective method for obtaining films with enhanced mechanical characteristics. Nano-sized lignin is rising as a class of sustainable nanomaterials that can be incorporated into latex colloids. Fundamental knowledge of the correlation between surface chemistry of lignin nanoparticles (LNPs) and integration efficiency in latex colloids and from it thermally processed latex films are scarce. Here, an approach to integrate self-assembled nanospheres of allylated lignin as the surface-activated cores in a seeded free-radical emulsion copolymerization of butyl acrylate and methyl methacrylate is proposed. The interfacial-modulating function on allylated LNPs regulates the emulsion polymerization and it successfully produces a multi-energy dissipative latex film structure containing a lignin-dominated core (16% dry weight basis). At an optimized allyl-terminated surface functionality of 1.04 mmol g-1 , the LNPs-integrated latex film exhibits extremely high toughness value above 57.7 MJ m-3 . With multiple morphological and microstructural characterizations, the well-ordered packing of latex colloids under the nanoconfinement of LNPs in the latex films is revealed. It is concluded that the surface chemistry metrics of colloidal cores in terms of the abundance of polymerization-modulating anchors and their accessibility have a delicate control over the structural evolution of core-shell latex colloids.

7.
Chempluschem ; 88(2): e202200426, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36700359

RESUMO

Originating from the concept of classical chemical gardens, a new field coined 'chemobrionics' has recently emerged. In the present work, two chemobrionic systems grown from a hydrogel/liquid interface at different time scales (for 1, 7, 14 or 28 days) were investigated, i. e., a calcium-based hydrogel with a phosphate counterion solution (Ca-gel) and a phosphate-based hydrogel with a calcium counterion solution (P-gel). The initial pH changes of the systems were investigated, and the obtained tubular structures were studied using optical microscopy, SEM, AFM, PXRD and TGA. One of the important findings is that the tubes obtained in the Ca-gel system were straight and long, which could be explained by the larger pH difference observed between the hydrogel and the counterion solution in this system (ΔpH∼2.1) compared to the P-gel system (ΔpH∼0). The Ca-gel structures remained overall more amorphous even though increased crystallinity was observed in both systems with increased time spent in counterion solution. Both systems contained hydroxyapatite phases, with additional calcite phases observed for the P-gel structures and traces of κ-carrageenan for the Ca-gel structures. Our study provides a promising method for controlling tubular macrostructures through adjusting the reaction conditions such as maturation time and pH.

8.
Carbohydr Polym ; 297: 119976, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36184128

RESUMO

To date, the energy-intensive production and high-water content severely limits nanocellulose applications on a large scale off-site. In this study, adding water-soluble polysaccharides (PS) to achieve an integrated process of water-redispersible nanocellulose production was well established. The addition of PS, in particular carboxymethylated-galactoglucomannan (cm-GGM), facilitates fibre fibrillation enabling homogenization at a higher solid content at 1.5 wt% compared with around 0.4 wt% for neat fibre. More importantly, the addition of cm-GGM saved 73 % energy in comparison without PS addition. Good water redispersibility of thus-prepared nanocellulose was validated in viewpoints of size distribution, morphology, viscosity and film properties as compared with neat nanocellulose. The tensile strength and optical transmittance of nanocellulose films increased to 116 MPa and 77 % compared to those without PS addition of 62 MPa and 74 %, respectively. Collectively, this study provides a new avenue for large-volume production of redispersible nanocellulose at a high solid content with less energy-consumption.


Assuntos
Celulose , Água , Polissacarídeos , Resistência à Tração
9.
ACS Omega ; 7(14): 11688-11695, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449986

RESUMO

Titanium dioxide (TiO2) is a commonly used electron selective layer in thin-film solar cells. The energy levels of TiO2 align well with those of most light-absorbing materials and facilitate extracting electrons while blocking the extraction of holes. In a device, this separates charge carriers and reduces recombination. In this study, we have evaluated the hole-blocking behavior of TiO2 compact layers using charge extraction by linearly increasing voltage in a metal-insulator-semiconductor structure (MIS-CELIV). This hole-blocking property was characterized as surface recombination velocity (S R) for holes at the interface between a semiconducting polymer and TiO2 layer. TiO2 layers of different thicknesses were prepared by sol-gel dip coating on two transparent conductive oxide substrates with different roughnesses. Surface coverage and film quality on both substrates were characterized using X-ray photoelectron spectroscopy and atomic force microscopy, along with its conductive imaging mode. Thicker TiO2 coatings provided better surface coverage, leading to reduced S R, unless the layers were otherwise defective. We found S R to be a more sensitive indicator of the overall film quality, as varying S R values were still observed among the films that looked similar in their characteristics via other methods.

10.
Int J Pharm ; 563: 217-227, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-30946894

RESUMO

Silymarin (SLM) is a hepatoprotective herbal drug characterized by low aqueous solubility and, consequently, low oral bioavailability. The objective of this study was to enhance the physiochemical properties of SLM, through preparation and optimization of lyophilized nanosuspension tablets (LNTs). LNTs were prepared by sonoprecipitation technique followed by a freeze-drying process using both polyvinyl alcohol (PVA) as stabilizer and binder, and mannitol as cryoprotectant and disintegrating agent. 32 full factorial design (FFD) was applied to study the effect of independent variables at different concentrations of both PVA (X1) and mannitol (X2) on the dependent variables that included mean particle size (Y1), disintegration time (Y2), friability % (Y3) and time required to release 90% of the drug (Y4). Several physicochemical evaluations were implemented on the optimized formula; for instance differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy. These analyses demonstrated that the drug was in an amorphous state, stable in nanosize range and displayed no chemical interaction with the polymer. Moreover, the optimized formula had highly porous structure, rapid disintegration, friability with less than 1% and noticeable improvement in saturation solubility and dissolution rate.


Assuntos
Nanopartículas/química , Silimarina/química , Crioprotetores/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Liofilização , Manitol/química , Álcool de Polivinil/química , Suspensões , Comprimidos
11.
Colloids Surf B Biointerfaces ; 174: 136-144, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30447522

RESUMO

In this study hierarchically-structured latex polymer coatings and self-supporting films were characterised and their suitability for cell growth studies was tested with Human Dermal Fibroblasts (HDF). Latex can be coated or printed on rigid or flexible substrates thus enabling high-throughput fabrication. Here, coverslip glass substrates were coated with blends of two different aqueous latex dispersions: hydrophobic polystyrene (PS) and hydrophilic carboxylated acrylonitrile butadiene styrene (ABS). The nanostructured morphology and topography of the latex films was controlled by varying the mixing ratio of the components in the latex blend. Thin latex-coatings retain high transparency on glass allowing optical and high resolution imaging of cell growth and morphology. Compared to coverslip glass surfaces and commercial well-plates HDF cell growth was enhanced up to 150-250 % on latex surfaces with specific nanostructure. Growth rates were correlated with selected roughness parameters such as effective surface area (Sq), RMS-roughness (Sdr) and correlation length (Scl37). High-resolution confocal microscopy clearly indicated less actin stress-fibre development in cells on the latex surface compared to coverslip glass. The results show that surface nanotopography can, by itself, passively modulate HDF cell proliferation and cytoskeletal architecture.


Assuntos
Proliferação de Células , Derme/citologia , Fibroblastos/citologia , Látex/química , Nanoestruturas/química , Polímeros/química , Células Cultivadas , Humanos , Propriedades de Superfície
12.
Eur J Pharm Sci ; 122: 152-159, 2018 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-29966736

RESUMO

Orodispersible films (ODF) are immediately dissolving/disintegrating intraoral dosage forms, presented as substitutes of conventional tablets or capsules to ease problems associated with swallowing. Efforts have been made to be able to exploit ODFs as dosage forms for poorly soluble drugs. In the last two decades, mesoporous silica nanoparticles (MSNs) have been extensively used in drug delivery applications to overcome solubility problems of drugs. The tunable features of MSNs make them suitable candidates as drug carriers and solubility enhancers. In this study, the feasibility of MSNs as a carrier of poorly soluble drugs, using prednisolone as a model drug, in ODFs was investigated. Our results revealed that the increased amount of MSNs in ODFs leads to shortening of the disintegration time of the films. Drug content investigations showed that low dose ODFs with prednisolone incorporation efficiencies higher than 80% could be produced. Furthermore, the prednisolone release profile from ODFs can be tuned with the incorporation of MSNs as drug carrier (MSNpred). The MSNpred incorporated ODFs yield with immediate release of drug from the ODF, whereby 90% of the prednisolone content could be released in the first minutes. By modifying the MSNpred design with copolymer surface coating, prednisolone (cop-MSNpred) release can be modulated into a two-step sustained release profile. To sum up, the MSNs platform does not only provide careful low dose incorporation into ODF with high efficiency, but it also aids in tuning the drug release profiles from ODFs.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Administração Oral , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Porosidade , Saliva Artificial/química , Solubilidade
13.
ACS Appl Mater Interfaces ; 9(21): 17906-17913, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28488846

RESUMO

Uniform and pinhole-free electron-selective TiO2 layers are of utmost importance for efficient perovskite solar cells. Here we used a scalable and low-cost dip-coating method to prepare uniform and ultrathin (5-50 nm) compact TiO2 films on fluorine-doped tin oxide (FTO) glass substrates. The thickness of the film was tuned by changing the TiCl4 precursor concentration. The formed TiO2 follows the texture of the underlying FTO substrates, but at higher TiCl4 concentrations, the surface roughness is substantially decreased. This change occurs at a film thickness close to 20-30 nm. A similar TiCl4 concentration is needed to produce crystalline TiO2 films. Furthermore, below this film thickness, the underlying FTO might be exposed resulting in pinholes in the compact TiO2 layer. When integrated into mesoscopic perovskite solar cells there appears to be a similar critical compact TiO2 layer thickness above which the devices perform more optimally. The power conversion efficiency was improved by more than 50% (from 5.5% to ∼8.6%) when inserting a compact TiO2 layer. Devices without or with very thin compact TiO2 layers display J-V curves with an "s-shaped" feature in the negative voltage range, which could be attributed to immobilized negative ions at the electron-extracting interface. A strong correlation between the magnitude of the s-shaped feature and the exposed FTO seen in the X-ray photoelectron spectroscopy measurements indicates that the s-shape is related to pinholes in the compact TiO2 layer when it is too thin.

14.
Colloids Surf B Biointerfaces ; 136: 527-35, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26454542

RESUMO

Adsorption of proteins and adhesion of bacteria to a surface is affected by chemical and physical interactions. In this study, polymer coatings and their ability to adsorb avidin and Staphylococcus aureus were investigated. The surface chemistry and topography of the polymer coatings was modified by changing the weight ratio of the hydrophobic polystyrene (PS) and the hydrophilic acrylonitrile butadiene styrene (ABS) components in the polymer blend. Avidin adsorbed less to the ABS phase compared with the PS phase. The side-on orientation of avidin on the ABS surface, however, resulted in a higher specific binding of biotinylated bovine serum albumin. Steric effects and hydrophobic protein-surface interactions decreased the activity of avidin on the PS phase. The increased hydrophobicity and roughness of the polymer coatings enhanced the adhesion of S. aureus. The avidin-coated latex surface with 55% relative surface coverage of the PS phase showed anti-microbial behavior.


Assuntos
Proteínas de Bactérias/química , Nanoestruturas , Polímeros/química , Staphylococcus aureus/química , Adsorção , Aderência Bacteriana , Staphylococcus aureus/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...