Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
N Engl J Med ; 383(27): 2628-2638, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33108101

RESUMO

BACKGROUND: Adult-onset inflammatory syndromes often manifest with overlapping clinical features. Variants in ubiquitin-related genes, previously implicated in autoinflammatory disease, may define new disorders. METHODS: We analyzed peripheral-blood exome sequence data independent of clinical phenotype and inheritance pattern to identify deleterious mutations in ubiquitin-related genes. Sanger sequencing, immunoblotting, immunohistochemical testing, flow cytometry, and transcriptome and cytokine profiling were performed. CRISPR-Cas9-edited zebrafish were used as an in vivo model to assess gene function. RESULTS: We identified 25 men with somatic mutations affecting methionine-41 (p.Met41) in UBA1, the major E1 enzyme that initiates ubiquitylation. (The gene UBA1 lies on the X chromosome.) In such patients, an often fatal, treatment-refractory inflammatory syndrome develops in late adulthood, with fevers, cytopenias, characteristic vacuoles in myeloid and erythroid precursor cells, dysplastic bone marrow, neutrophilic cutaneous and pulmonary inflammation, chondritis, and vasculitis. Most of these 25 patients met clinical criteria for an inflammatory syndrome (relapsing polychondritis, Sweet's syndrome, polyarteritis nodosa, or giant-cell arteritis) or a hematologic condition (myelodysplastic syndrome or multiple myeloma) or both. Mutations were found in more than half the hematopoietic stem cells, including peripheral-blood myeloid cells but not lymphocytes or fibroblasts. Mutations affecting p.Met41 resulted in loss of the canonical cytoplasmic isoform of UBA1 and in expression of a novel, catalytically impaired isoform initiated at p.Met67. Mutant peripheral-blood cells showed decreased ubiquitylation and activated innate immune pathways. Knockout of the cytoplasmic UBA1 isoform homologue in zebrafish caused systemic inflammation. CONCLUSIONS: Using a genotype-driven approach, we identified a disorder that connects seemingly unrelated adult-onset inflammatory syndromes. We named this disorder the VEXAS (vacuoles, E1 enzyme, X-linked, autoinflammatory, somatic) syndrome. (Funded by the NIH Intramural Research Programs and the EU Horizon 2020 Research and Innovation Program.).


Assuntos
Doenças Autoimunes/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Inflamação/genética , Mutação de Sentido Incorreto , Enzimas Ativadoras de Ubiquitina/genética , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Citocinas/sangue , Exoma/genética , Genótipo , Arterite de Células Gigantes/genética , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/genética , Síndromes Mielodisplásicas/genética , Poliarterite Nodosa/genética , Policondrite Recidivante/genética , Análise de Sequência de DNA , Síndrome de Sweet/genética , Síndrome
2.
Mol Genet Metab ; 131(1-2): 98-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33097395

RESUMO

Leigh syndrome is a genetically heterogeneous disorder resulting from deficient oxidative energy biogenesis. The syndrome is characterized by subacute episodic decompensations, transiently elevated lactate, and necrotizing brain lesions most often in the striatum and brainstem. Acute decompensation is often triggered by viral infections. Sequalae from repeated episodes leads to progressive neurological deterioration and death. The severity of Leigh syndrome varies widely, from a rapid demise in childhood to rare adult presentations. Although the causes of Leigh syndrome include genes affecting a variety of different pathways, more than 75 of them are nuclear or mitochondrial encoded genes involved in the assembly and catalytic activity of mitochondrial respiratory complex I. Here we report the detailed clinical and molecular phenotype of two adults with mild presentations of NDUFS3 and NDUFAF6-related Leigh Syndrome. Mitochondrial assays revealed slightly reduced complex I activity in one proband and normal complex I activity in the other. The proband with NDUFS3-related Leigh syndrome was mildly affected and lived into adulthood with novel biallelic variants causing aberrant mRNA splicing (NM_004551.2:c.419G > A; p.Arg140Gln; NM_004551.2:c.381 + 6 T > C). The proband with NDUFAF6-related Leigh syndrome had biallelic variants that cause defects in mRNA splicing (NM_152416.3:c.371 T > C; p.Ile124Thr; NM_152416.3:c.420 + 2_420 + 3insTA). The mild phenotypes of these two individuals may be attributed to some residual production of normal NDUFS3 and NDUFAF6 proteins by NDUFS3 and NDUFAF6 mRNA isoforms alongside mutant transcripts. Taken together, these cases reported herein suggest that splice-regulatory variants to complex I proteins could result in milder phenotypes.


Assuntos
Complexo I de Transporte de Elétrons/genética , Doença de Leigh/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , NADH Desidrogenase/genética , Adolescente , Adulto , Alelos , Criança , Feminino , Predisposição Genética para Doença , Humanos , Doença de Leigh/patologia , Masculino , Mutação/genética , Linhagem , Splicing de RNA/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA