Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(36): 40879-40890, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32805823

RESUMO

This work focuses on the mechanisms of interfacial processes at the surface of amorphous silicon thin-film electrodes in organic carbonate electrolytes to unveil the origins of the inherent nonpassivating behavior of silicon anodes in Li-ion batteries. Attenuated total reflection Fourier-transform infrared spectroscopy, X-ray absorption spectroscopy, and infrared near-field scanning optical microscopy were used to investigate the formation, evolution, and chemical composition of the surface layer formed on Si upon cycling. We found that the chemical composition and thickness of the solid/electrolyte interphase (SEI) layer continuously change during the charging/discharging cycles. This SEI layer "breathing" effect is directly related to the formation of lithium ethylene dicarbonate (LiEDC) and LiPF6 salt decomposition products during silicon lithiation and their subsequent disappearance upon delithiation. The detected appearance and disappearance of LiEDC and LiPF6 decomposition compounds in the SEI layer are directly linked with the observed interfacial instability and poor passivating behavior of the silicon anode.

2.
ACS Appl Mater Interfaces ; 12(23): 26607-26613, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32423200

RESUMO

Because they deliver outstanding energy density, next-generation lithium metal batteries (LMBs) are essential to the advancement of both electric mobility and portable electronic devices. However, the high reactivity of metallic lithium surfaces leads to the low electrochemical performance of many secondary batteries. Besides, Li deposition is not uniform, which has been attributed to the low ionic conductivity of the anode surface. In particular, lithium exposure to CO2 gas is considered detrimental due to the formation of carbonate on the solid electrolyte interphase (SEI). In this work, we explored the interaction of Li metal with CO2 gas as a function of time using ambient pressure X-ray photoelectron spectroscopy to clarify the reaction pathway and main intermediates involved in the process during which oxalate formation has been detected. Furthermore, when O2 gas is part of the surrounding environment with CO2 gas, the reaction pathway is bypassed to directly promote carbonate as a single product.

3.
J Phys Chem B ; 122(2): 864-870, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29166014

RESUMO

Understanding the surface chemistry of electrocatalysts in operando can bring insight into the reaction mechanism, and ultimately the design of more efficient materials for sustainable energy storage and conversion. Recent progress in synchrotron based X-ray spectroscopies for in operando characterization allows us to probe the solid/liquid interface directly while applying an external potential, applied here to the model system of Pt in alkaline electrolyte for the hydrogen evolution reaction (HER). We employ ambient pressure X-ray photoelectron spectroscopy (AP-XPS) to identify the oxidation and reduction of Pt-oxides and hydroxides on the surface as a function of applied potential, and further assess the potential for hydrogen adsorption and absorption (hydride formation) during and after the HER. This new window into the surface chemistry of Pt in alkaline electrolyte brings insight into the nature of the rate limiting step, the extent of H ad/absorption, and its persistence at more anodic potentials.

4.
J Phys Chem B ; 122(2): 666-671, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28846416

RESUMO

Recent advances of ambient pressure X-ray photoelectron spectroscopy (AP-XPS) have enabled the chemical composition and the electrical potential profile at a liquid/electrode interface under electrochemical reaction conditions to be directly probed. In this work, we apply this operando technique to study the surface chemical composition evolution on a Co metal electrode in 0.1 M KOH aqueous solution under various electrical biases. It is found that an ∼12.2 nm-thick layer of Co(OH)2 forms at a potential of about -0.4 VAg/AgCl, and upon increasing the anodic potential to about +0.4 VAg/AgCl, this layer is partially oxidized into cobalt oxyhydroxide (CoOOH). A CoOOH/Co(OH)2 mixture layer is formed on the top of the electrode surface. Finally, the oxidized surface layer can be reduced to Co0 at a cathodic potential of -1.35 VAg/Cl. These observations indicate that the ultrathin layer containing cobalt oxyhydroxide is the active phase for oxygen evolution reaction (OER) on a Co electrode in an alkaline electrolyte, consistent with previous studies.

5.
J Phys Condens Matter ; 29(46): 464001, 2017 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-29057751

RESUMO

The study of CO oxidation on Pt(1 1 0) surface is revisited using ambient pressure x-ray photoemission spectroscopy. When the surface temperature reaches the activation temperature for CO oxidation under elevated pressure conditions, both the α-phase of PtO2 oxide and chemisorbed oxygen are formed simultaneously on the surface. Due to the exothermic nature of CO oxidation, the temperature of the Pt surface increases as CO oxidation takes place. As the CO/O2 ratio increases, the production of CO2 increases continuously and the surface temperature also increases. Interestingly, within the diffusion limited regions, the amount of surface oxide changes little while the chemisorbed oxygen is reduced.

6.
J Phys Chem Lett ; 8(22): 5579-5586, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29083905

RESUMO

Photoelectrochemical water splitting is a promising pathway for the direct conversion of renewable solar energy to easy to store and use chemical energy. The performance of a photoelectrochemical device is determined in large part by the heterogeneous interface between the photoanode and the electrolyte, which we here characterize directly under operating conditions using interface-specific probes. Utilizing X-ray photoelectron spectroscopy as a noncontact probe of local electrical potentials, we demonstrate direct measurements of the band alignment at the semiconductor/electrolyte interface of an operating hematite/KOH photoelectrochemical cell as a function of solar illumination, applied potential, and doping. We provide evidence for the absence of in-gap states in this system, which is contrary to previous measurements using indirect methods, and give a comprehensive description of shifts in the band positions and limiting processes during the photoelectrochemical reaction.

7.
Nat Commun ; 7: 12695, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27576762

RESUMO

The electrochemical double layer plays a critical role in electrochemical processes. Whilst there have been many theoretical models predicting structural and electrical organization of the electrochemical double layer, the experimental verification of these models has been challenging due to the limitations of available experimental techniques. The induced potential drop in the electrolyte has never been directly observed and verified experimentally, to the best of our knowledge. In this study, we report the direct probing of the potential drop as well as the potential of zero charge by means of ambient pressure X-ray photoelectron spectroscopy performed under polarization conditions. By analyzing the spectra of the solvent (water) and a spectator neutral molecule with numerical simulations of the electric field, we discern the shape of the electrochemical double layer profile. In addition, we determine how the electrochemical double layer changes as a function of both the electrolyte concentration and applied potential.

8.
Nat Commun ; 7: 11886, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27297565

RESUMO

Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

9.
J Am Chem Soc ; 138(3): 726-9, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26651259

RESUMO

The key factor in long-term use of batteries is the formation of an electrically insulating solid layer that allows lithium ion transport but stops further electrolyte redox reactions on the electrode surface, hence solid electrolyte interphase (SEI). We have studied a common electrolyte, 1.0 M LiPF6/ethylene carbonate (EC)/diethyl carbonate (DEC), reduction products on crystalline silicon (Si) electrodes in a lithium (Li) half-cell system under reaction conditions. We employed in situ sum frequency generation vibrational spectroscopy (SFG-VS) with interface sensitivity in order to probe the molecular composition of the SEI surface species under various applied potentials where electrolyte reduction is expected. We found that, with a Si(100)-hydrogen terminated wafer, a Si-ethoxy (Si-OC2H5) surface intermediate forms due to DEC decomposition. Our results suggest that the SEI surface composition varies depending on the termination of Si surface, i.e., the acidity of the Si surface. We provide the evidence of specific chemical composition of the SEI on the anode surface under reaction conditions. This supports an electrochemical electrolyte reduction mechanism in which the reduction of the DEC molecule to an ethoxy moiety plays a key role. These findings shed new light on the formation mechanism of SEI on Si anodes in particular and on SEI formation in general.

10.
J Am Chem Soc ; 137(9): 3181-4, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25689135

RESUMO

Although controlling the interfacial chemistry of electrodes in Li-ion batteries (LIBs) is crucial for maintaining the reversibility, electrolyte decomposition has not been fully understood. In this study, electrolyte decomposition on model electrode surfaces (Au and Sn) was investigated by in situ attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Simultaneously obtained ATR-FTIR spectra and cyclic voltammetry measurements show that lithium ethylene dicarbonate and lithium propionate form on the Au electrode at 0.6 V, whereas diethyl 2,5-dioxahexane dicarboxylate and lithium propionate form on the Sn electrode surface at 1.25 V. A noncatalytic reduction path on the Au surface and a catalytic reduction path on the Sn surface are introduced to explain the surface dependence of the overpotential and product selectivity. This represents a new concept for explaining electrolyte reactions on the anode of LIBs. The present investigation shows that catalysis plays a dominant role in the electrolyte decomposition process and has important implications in electrode surface modification and electrolyte recipe selection, which are critical factors for enhancing the efficiency, durability, and reliability of LIBs.

11.
Phys Chem Chem Phys ; 15(43): 19019-23, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24097254

RESUMO

We report on the chemical adsorption mechanism of atomic oxygen on the Pt(111) surface using angle-resolved-photoemission spectroscopy (ARPES) and density functional calculations. The detailed band structure of Pt(111) from ARPES reveals that most of the bands near the Fermi level are surface-states. By comparing band maps of Pt and O/Pt, we identify that dxz (dyz) and dz(2) orbitals are strongly correlated in the surface-states around the symmetry point M and K, respectively. Additionally, we demonstrate that the s- or p-orbital of oxygen atoms hybridizes preferentially with the dxz (dyz) orbital near the M symmetry point. This weak hybridization occurs with minimal charge transfer.

13.
J Chem Phys ; 133(3): 034501, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20649331

RESUMO

By using high resolution x-ray photoelectron spectroscopy, we show that inelastic scattering of photoelectron at low temperature (30-50 K) generates two kinds of oxygen species on Pt (111) surface. Intense synchrotron radiation source dissociates oxygen molecules into chemisorbed atomic oxygen and induces the formation of PtO on the surface. Estimated coverage of dissociated atomic oxygen is 0.5 ML, suggesting possible formation of p(2 x 1) surface structure, while PtO coverage shows saturation coverage of 0.5 ML. Molecular oxygen dosed at 30 K undergoes thermally activated transition from physisorbed to chemisorbed state at around 40 K.

15.
J Chem Phys ; 129(17): 174707, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19045370

RESUMO

The surface segregation and electronic structure of Re(3)Pt polycrystalline alloy were investigated via x-ray photoelectron spectroscopy (XPS). The results from angle-resolved core-level XPS show the enrichment of Pt at the top surface layer upon annealing at T=1200 K. The experimental results show excellent agreement with a theoretical model calculation, providing the element-specific depth profiles upon the high temperature annealing process. The presence of strong electron hybridization between Re and Pt is evident in the valence-band density-of-states ultraviolet photoemission spectra.

16.
J Phys Chem B ; 111(40): 11658-61, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17877383

RESUMO

The electronic structure of pol(ethylene oxide) (PEO) in a thin (<1 mu) film sample was experimentally probed by X-ray emission spectroscopy. Both nonresonant and resonant X-ray emission spectra were simulated by using density functional theory (DFT) applied to four different models representing different conformations in the polymer. Calculated spectra were compared with experimental results for the PEO film. It was found that the best fit was obtained with the polymer conformation in PEO electrolytes from which the salt (LiMF6, M = P, As, or Sb) had been removed. This conformation is different from the crystalline bulk polymer and implies that film casting, commonly used to form electrolytes for Li polymer batteries, induces the same conformation in the polymer not depending upon the presence of salt.

17.
Nat Mater ; 6(3): 241-7, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17310139

RESUMO

One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt(3)M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits 'volcano-type' behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt(3)M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed.

18.
Science ; 315(5811): 493-7, 2007 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-17218494

RESUMO

The slow rate of the oxygen reduction reaction (ORR) in the polymer electrolyte membrane fuel cell (PEMFC) is the main limitation for automotive applications. We demonstrated that the Pt3Ni(111) surface is 10-fold more active for the ORR than the corresponding Pt(111) surface and 90-fold more active than the current state-of-the-art Pt/C catalysts for PEMFC. The Pt3Ni(111) surface has an unusual electronic structure (d-band center position) and arrangement of surface atoms in the near-surface region. Under operating conditions relevant to fuel cells, its near-surface layer exhibits a highly structured compositional oscillation in the outermost and third layers, which are Pt-rich, and in the second atomic layer, which is Ni-rich. The weak interaction between the Pt surface atoms and nonreactive oxygenated species increases the number of active sites for O2 adsorption.

19.
J Am Chem Soc ; 128(27): 8813-9, 2006 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-16819874

RESUMO

The surface properties of PtM (M = Co, Ni, Fe) polycrystalline alloys are studied by utilizing Auger electron spectroscopy, low energy ion scattering spectroscopy, and ultraviolet photoemission spectroscopy. For each alloy initial surface characterization was done in an ultrahigh vacuum (UHV) system, and depending on preparation procedure it was possible to form surfaces with two different compositions. Due to surface segregation thermodynamics, annealed alloy surfaces form the outermost Pt-skin surface layer, which consists only platinum atoms, while the sputtered surfaces have the bulk ratio of alloying components. The measured valence band density of state spectra clearly shows the differences in electronic structures between Pt-skin and sputtered surfaces. Well-defined surfaces were hereafter transferred out from UHV and exposed to the acidic (electro)chemical environment. The electrochemical and post-electrochemical UHV surface characterizations revealed that Pt-skin surfaces are stable during and after immersion to an electrolyte. In contrast all sputtered surfaces formed Pt-skeleton outermost layers due to dissolution of transition metal atoms. Therefore, these three different near-surface compositions (Pt-skin, Pt-skeleton, and pure polycrystalline Pt) all having pure-Pt outermost layers are found to have different electronic structures, which originates from different arrangements of subsurface atoms of the alloying component. Modification in Pt electronic properties alters adsorption/catalytic properties of the corresponding bimetallic alloy. The most active systems for the electrochemical oxygen reduction reaction are established to be the Pt-skin near-surface composition, which also have the most shifted metallic d-band center position versus Fermi level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...