Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Clin Chem Lab Med ; 62(5): 999-1010, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38037809

RESUMO

OBJECTIVES: Sepsis is a life-threatening condition implicating an inadequate activation of the immune system. Platelets act as modulators and contributors to immune processes. Indeed, altered platelet turnover, thrombotic events, and changes in thrombopoietin levels in systemic inflammation have been reported, but thrombopoietin-levels in sepsis and septic-shock have not yet been systematically evaluated. We therefore performed a meta-analysis of thrombopoietin (TPO)-levels in patients with sepsis. METHODS: Two independent reviewers screened records and full-text articles for inclusion. Scientific databases were searched for studies examining thrombopoietin levels in adult sepsis and septic-shock patients until August 1st 2022. RESULTS: Of 95 items screened, six studies met the inclusion criteria, including 598 subjects. Both sepsis and severe sepsis were associated with increased levels of thrombopoietin (sepsis vs. control: standardized mean difference 3.06, 95 % CI 1.35-4.77; Z=3.50, p=0.0005) (sepsis vs. severe sepsis: standardized mean difference -1.67, 95 % CI -2.46 to -0.88; Z=4.14, p<0.0001). TPO-levels did not show significant differences between severe sepsis and septic shock patients but differed between sepsis and inflammation-associated non-septic controls. Overall, high heterogeneity and low sample size could be noted. CONCLUSIONS: Concluding, increased levels of thrombopoietin appear to be present both in sepsis and severe sepsis with high heterogeneity but thrombopoietin does not allow to differentiate between severe sepsis and septic-shock. TPO may potentially serve to differentiate sepsis from non-septic trauma and/or tissue damage related (systemic) inflammation. Usage of different assays and high heterogeneity demand standardization of methods and further large multicenter trials.


Assuntos
Sepse , Choque Séptico , Adulto , Humanos , Trombopoetina
2.
Cell Rep ; 42(12): 113501, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38039128

RESUMO

Upon proinflammatory challenges, endothelial cell surface presentation of the leukocyte receptor P-selectin, together with the stabilizing co-factor CD63, is needed for leukocyte capture and is mediated via demand-driven exocytosis from the Weibel-Palade bodies that fuse with the plasma membrane. We report that neutrophil recruitment to activated endothelium is significantly reduced in mice deficient for the endolysosomal cation channel TPC2 and in human primary endothelial cells with pharmacological TPC2 block. We observe less CD63 signal in whole-mount stainings of proinflammatory-activated cremaster muscles from TPC2 knockout mice. We find that TPC2 is activated and needed to ensure the transfer of CD63 from endolysosomes via Weibel-Palade bodies to the plasma membrane to retain P-selectin on the cell surface of human primary endothelial cells. Our findings establish TPC2 as a key element to leukocyte interaction with the endothelium and a potential pharmacological target in the control of inflammatory leukocyte recruitment.


Assuntos
Selectina-P , Canais de Dois Poros , Camundongos , Humanos , Animais , Selectina-P/metabolismo , Células Endoteliais/metabolismo , Corpos de Weibel-Palade/metabolismo , Adesão Celular , Leucócitos/metabolismo , Endotélio Vascular/metabolismo
3.
Front Immunol ; 14: 1259004, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849760

RESUMO

Staphylococcus aureus is a common cause of hospital-acquired pneumonia associated with high mortality. Adequate clinical treatment is impeded by increasing occurrence of antibiotic resistances. Understanding the underlying mechanisms of its virulence during infections is a prerequisite to finding alternative treatments. Here, we demonstrated that an increased nuclease activity of a S. aureus isolate from a person with cystic fibrosis confers a growth advantage in a model of acute lung infection compared to the isogenic strain with low nuclease activity. Comparing these CF-isolates with a common MRSA-USA300 strain with similarly high nuclease activity but significantly elevated levels of Staphylococcal Protein A (SpA) revealed that infection with USA300 resulted in a significantly increased bacterial burden in a model of murine lung infection. Replenishment with the cell wall-bound SpA of S. aureus, which can also be secreted into the environment and binds to tumor necrosis factor receptor -1 (TNFR-1) to the CF-isolates abrogated these differences. In vitro experiments confirmed significant differences in spa-expression between USA300 compared to CF-isolates, thereby influencing TNFR-1 shedding, L-selectin shedding, and production of reactive oxygen species through activation of ADAM17.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Pneumonia , Infecções Estafilocócicas , Humanos , Camundongos , Animais , Staphylococcus aureus , Proteína Estafilocócica A , Virulência , Modelos Animais de Doenças , Infecções Estafilocócicas/microbiologia , Pulmão
4.
Small ; 19(14): e2205185, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36635040

RESUMO

Nitric oxide (NO) plays a significant role in controlling the physiology and pathophysiology of the body, including the endothelial antiplatelet function and therefore, antithrombogenic property of the blood vessels. This property of NO can be exploited to prevent thrombus formation on artificial surfaces like extracorporeal membrane oxygenators, which when come into contact with blood lead to protein adsorption and thereby platelet activation causing thrombus formation. However, NO is extremely reactive and has a very short biological half-life in blood, so only endogenous generation of NO from the blood contacting material can result into a stable and kinetically controllable local delivery of NO. In this regards, highly hydrophilic bioactive nanogels are presented which can endogenously generate NO in blood plasma from endogenous NO-donors thereby maintaining a physiological NO flux. It is shown that NO releasing nanogels could initiate cGMP-dependent protein kinase signaling followed by phosphorylation of vasodilator-stimulated phosphoprotein in platelets. This prevents platelet activation and aggregation even in presence of highly potent platelet activators like thrombin, adenosine 5'-diphosphate, and U46619 (thromboxane A2 mimetic).


Assuntos
Óxido Nítrico , Trombose , Humanos , Óxido Nítrico/metabolismo , Nanogéis , GMP Cíclico/metabolismo , Plaquetas/metabolismo , Endotélio/metabolismo
5.
Cells ; 11(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36497202

RESUMO

Acute respiratory distress syndrome (ARDS) due to pulmonary infections is associated with high morbidity and mortality. Upon inflammation, the alarmin S100A8/A9 is released and stimulates neutrophil recruitment mainly via binding to Toll-like receptor 4 (TLR4). TLR4 is also expressed on platelets, which modulate the immune response through direct interaction with leukocytes. In a murine model of Klebsiella pneumoniae-induced pulmonary inflammation, global S100A9 deficiency resulted in diminished neutrophil recruitment into the lung alveoli and neutrophil accumulation in the intravascular space, indicating an impaired neutrophil migration. A lack of TLR4 on platelets resulted in reduced neutrophil counts in the whole lung, emphasising the impact of TLR4-mediated platelet activity on neutrophil behaviour. Flow cytometry-based analysis indicated elevated numbers of platelet-neutrophil complexes in the blood of S100A9-/- mice. Intravital microscopy of the murine cremaster muscle confirmed these findings and further indicated a significant increase in neutrophil-platelet complex formation in S100A9-/- mice, which was reversed by administration of the S100A8/A9 tetramer. An in vitro bilayer assay simulated the murine alveolar capillary barrier during inflammation and validated significant differences in transmigration behaviour between wild-type and S100A9-/- neutrophils. This study demonstrates the role of S100A8/A9 during platelet-neutrophil interactions and neutrophil recruitment during pulmonary inflammation.


Assuntos
Calgranulina A , Calgranulina B , Neutrófilos , Pneumonia Bacteriana , Animais , Camundongos , Alarminas/metabolismo , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Inflamação/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Camundongos Knockout , Pneumonia Bacteriana/metabolismo
6.
Anaesthesiologie ; 71(10): 741-749, 2022 10.
Artigo em Alemão | MEDLINE | ID: mdl-36064976

RESUMO

BACKGROUND: Acutely occurring organ damage significantly contributes to morbidity and mortality in the perioperative context. OBJECTIVE: This article highlights new clinical perspectives on how perioperative organ damage can be prevented and ameliorated by influencing the high mobility group box 1 protein (HMGB1) signaling. MATERIAL AND METHODS: A MEDLINE search was performed in the fields of clinical and basic research. The presentation of basic mechanisms of perioperative organ damage and the discussion of the importance of HMGB1 in prevention and treatment by pharmaceutical and nonpharmaceutical interventions are the focus of the review. RESULTS: The HMGB1 is a central element in the pathogenesis of septic and aseptic inflammation-induced organ damage. Remote ischemic preconditioning (RIPC) and dexmedetomidine are highly effective approaches to mitigate or prevent organ damage. CONCLUSION: The RIPC and dexmedetomidine offer protective properties in ischemia-reperfusion injury as well as in inflammation-related organ damage, which are mediated by HMGB1, among others. This effectively protects the kidneys, heart, lungs, liver and brain. The application of these concepts should be considered in routine clinical practice.


Assuntos
Dexmedetomidina , Proteína HMGB1 , Precondicionamento Isquêmico , Dexmedetomidina/farmacologia , Proteína HMGB1/metabolismo , Humanos , Inflamação , Preparações Farmacêuticas
7.
JCI Insight ; 7(21)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36107633

RESUMO

Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.


Assuntos
Injúria Renal Aguda , Glutamina , Humanos , Camundongos , Animais , Glutamina/farmacologia , Glutamina/metabolismo , Proteômica , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/metabolismo , Apoptose/fisiologia , Estresse Oxidativo , Células Epiteliais/metabolismo
8.
Front Immunol ; 13: 953129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979369

RESUMO

Platelets are well characterized for their indispensable role in primary hemostasis to control hemorrhage. Research over the past years has provided a substantial body of evidence demonstrating that platelets also participate in host innate immunity. The surface expression of pattern recognition receptors, such as TLR2 and TLR4, provides platelets with the ability to sense bacterial products in their environment. Platelet α-granules contain microbicidal proteins, chemokines and growth factors, which upon release may directly engage pathogens and/or contribute to inflammatory signaling. Additionally, platelet interactions with neutrophils enhance neutrophil activation and are often crucial to induce a sufficient immune response. In particular, platelets can activate neutrophils to form neutrophil extracellular traps (NETs). This specific neutrophil effector function is characterized by neutrophils expelling chromatin fibres decorated with histones and antimicrobial proteins into the extracellular space where they serve to trap and kill pathogens. Until now, the mechanisms and signaling pathways between platelets and neutrophils inducing NET formation are still not fully characterized. NETs were also detected in thrombotic lesions in several disease backgrounds, pointing towards a role as an interface between neutrophils, platelets and thrombosis, also known as immunothrombosis. The negatively charged DNA within NETs provides a procoagulant surface, and in particular NET-derived proteins may directly activate platelets. In light of the current COVID-19 pandemic, the topic of immunothrombosis has become more relevant than ever, as a majority of COVID-19 patients display thrombi in the lung capillaries and other vascular beds. Furthermore, NETs can be found in the lung and other tissues and are associated with an increased mortality. Here, virus infiltration may lead to a cytokine storm that potently activates neutrophils and leads to massive neutrophil infiltration into the lung and NET formation. The resulting NETs presumably activate platelets and coagulation factors, further contributing to the subsequent emergence of microthrombi in pulmonary capillaries. In this review, we will discuss the interplay between platelets and NETs and the potential of this alliance to influence the course of inflammatory diseases. A better understanding of the underlying molecular mechanisms and the identification of treatment targets is of utmost importance to increase patients' survival and improve the clinical outcome.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Humanos , Inflamação/metabolismo , Pandemias , Trombose/metabolismo
9.
Cells ; 11(12)2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35741047

RESUMO

The innate immune system is the first line of defense against invading pathogens or sterile injuries. Pattern recognition receptors (PRR) sense molecules released from inflamed or damaged cells, or foreign molecules resulting from invading pathogens. PRRs can in turn induce inflammatory responses, comprising the generation of cytokines or chemokines, which further induce immune cell recruitment. Neutrophils represent an essential factor in the early immune response and fulfill numerous tasks to fight infection or heal injuries. The release of neutrophil extracellular traps (NETs) is part of it and was originally attributed to the capture and elimination of pathogens. In the last decade studies revealed a detrimental role of NETs during several diseases, often correlated with an exaggerated immune response. Overwhelming inflammation in single organs can induce remote organ damage, thereby further perpetuating release of inflammatory molecules. Here, we review recent findings regarding damage-associated molecular patterns (DAMPs) which are able to induce NET formation, as well as NET components known to act as DAMPs, generating a putative fatal circle of inflammation contributing to organ damage and sequentially occurring remote organ injury.


Assuntos
Armadilhas Extracelulares , Alarminas , Humanos , Inflamação , Insuficiência de Múltiplos Órgãos , Neutrófilos
10.
Cells ; 11(12)2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35741086

RESUMO

Platelets are among the most abundant cells in the mammalian circulation. Classical platelet functions in hemostasis and wound healing have been intensively explored and are generally accepted. During the past decades, the research focus broadened towards their participation in immune-modulatory events, including pro-inflammatory and, more recently, inflammatory resolution processes. Platelets are equipped with a variety of abilities enabling active participation in immunological processes. Toll-like receptors mediate the recognition of pathogens, while the release of granule contents and microvesicles promotes direct pathogen defense and an interaction with leukocytes. Platelets communicate and physically interact with neutrophils, monocytes and a subset of lymphocytes via soluble mediators and surface adhesion receptors. This interaction promotes leukocyte recruitment, migration and extravasation, as well as the initiation of effector functions, such as the release of extracellular traps by neutrophils. Platelet-derived prostaglandin E2, C-type lectin-like receptor 2 and transforming growth factor ß modulate inflammatory resolution processes by promoting the synthesis of pro-resolving mediators while reducing pro-inflammatory ones. Furthermore, platelets promote the differentiation of CD4+ T cells in T helper and regulatory T cells, which affects macrophage polarization. These abilities make platelets key players in inflammatory diseases such as pneumonia and the acute respiratory distress syndrome, including the pandemic coronavirus disease 2019. This review focuses on recent findings in platelet-mediated immunity during acute inflammation.


Assuntos
Plaquetas , COVID-19 , Animais , Plaquetas/metabolismo , Hemostasia , Inflamação/metabolismo , Mamíferos , Neutrófilos
11.
Angiogenesis ; 25(4): 503-515, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35723762

RESUMO

AIMS: Although coronavirus disease 2019 (COVID-19) and bacterial sepsis are distinct conditions, both are known to trigger endothelial dysfunction with corresponding microcirculatory impairment. The purpose of this study was to compare microvascular injury patterns and proteomic signatures in COVID-19 and bacterial sepsis patients. METHODS AND RESULTS: This multi-center, observational study included 22 hospitalized adult COVID-19 patients, 43 hospitalized bacterial sepsis patients, and 10 healthy controls from 4 hospitals. Microcirculation and glycocalyx dimensions were quantified via intravital sublingual microscopy. Plasma proteins were measured using targeted proteomics (Olink). Coregulation and cluster analysis of plasma proteins was performed using a training-set and confirmed in a test-set. An independent external cohort of 219 COVID-19 patients was used for validation and outcome analysis. Microcirculation and plasma proteome analysis found substantial overlap between COVID-19 and bacterial sepsis. Severity, but not disease entity explained most data variation. Unsupervised correlation analysis identified two main coregulated plasma protein signatures in both diseases that strictly counteract each other. They were associated with microvascular dysfunction and several established markers of clinical severity. The signatures were used to derive new composite biomarkers of microvascular injury that allow to predict 28-day mortality or/and intubation (area under the curve 0.90, p < 0.0001) in COVID-19. CONCLUSION: Our data imply a common biological host response of microvascular injury in both bacterial sepsis and COVID-19. A distinct plasma signature correlates with endothelial health and improved outcomes, while a counteracting response is associated with glycocalyx breakdown and high mortality. Microvascular health biomarkers are powerful predictors of clinical outcomes.


Assuntos
COVID-19 , Sepse , Adulto , Biomarcadores/metabolismo , Humanos , Microcirculação , Proteoma , Proteômica
12.
Cells ; 11(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35681510

RESUMO

Acute kidney injury (AKI) is a frequent complication in critically ill patients. Supportive treatment of AKI patients is based on renal-replacement therapy, including continuous veno-venous hemofiltration (CVVH). To limit clotting events on extracorporeal surfaces, anticoagulants are administered, including systemic heparin and local citrate. The differential and comparative effects of these anticoagulants on leukocyte function in acute kidney injury patients are, so far, insufficiently understood. In this bio-add-on-study, AKI patients were randomized as part of a parallel-group trial to either systemic heparin or regional citrate anticoagulation. Patient samples were collected upon inclusion, prior to CVVH initiation at day 0, day 1, day 3 and day 5, following CVVH initiation, and one day after cessation of CVVH, then immediately analyzed. Flow cytometric assessment of surface-receptor molecules was conducted. Whole-blood-perfused human microfluidic chambers were used for the analysis of neutrophil rolling and adhesion. Acute kidney injury was associated with significant changes in the surface expression of CD182 and CD16 throughout CVVH treatment, independent of the anticoagulation regime. AKI furthermore abrogated selectin-induced slow leukocyte rolling and diminished chemokine-induced leukocyte arrest. Subgroup analyses of citrate vs. heparin treatment showed no significant differences between groups, independent of the duration of CVVH treatment. CD182 and CD16 expression remained low in both groups throughout CVVH therapy. These data confirm that AKI impairs selectin-mediated leukocyte slow rolling and chemokine-induced leukocyte arrest in vitro. Systemic heparin or local citrate anticoagulation have no differential effect on the leukocyte recruitment steps examined in this study.


Assuntos
Injúria Renal Aguda , Terapia de Substituição Renal Contínua , Hemofiltração , Injúria Renal Aguda/terapia , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Citratos/farmacologia , Citratos/uso terapêutico , Ácido Cítrico/farmacologia , Hemofiltração/efeitos adversos , Heparina/farmacologia , Heparina/uso terapêutico , Humanos , Leucócitos
13.
JCI Insight ; 7(14)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35727636

RESUMO

Acute kidney injury increases morbidity and mortality, and previous studies have shown that remote ischemic preconditioning (RIPC) reduces the risk of acute kidney injury after cardiac surgery. RIPC increases urinary high mobility group box protein-1 (HMGB1) levels in patients, and this correlates with kidney protection. Here, we show that RIPC reduces renal ischemia-reperfusion injury and improves kidney function in mice. Mechanistically, RIPC increases HMGB1 levels in the plasma and urine, and HMGB1 binds to TLR4 on renal tubular epithelial cells, inducing transcriptomic modulation of renal tubular epithelial cells and providing renal protection, whereas TLR4 activation on nonrenal cells was shown to contribute to renal injury. This protection is mediated by activation of induction of AMPKα and NF-κB; this induction contributes to the upregulation of Sema5b, which triggers a transient, protective G1 cell cycle arrest. In cardiac surgery patients at high risk for postoperative acute kidney injury, increased HMGB1 and Sema5b levels after RIPC were associated with renal protection after surgery. The results may help to develop future clinical treatment options for acute kidney injury.


Assuntos
Injúria Renal Aguda , Proteína HMGB1 , Precondicionamento Isquêmico , Subunidade p50 de NF-kappa B/metabolismo , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/prevenção & controle , Animais , Pontos de Checagem do Ciclo Celular , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Precondicionamento Isquêmico/métodos , Rim/metabolismo , Camundongos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo
14.
Am J Respir Crit Care Med ; 206(4): 488-500, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35699655

RESUMO

Rationale: Capillary leakage frequently occurs during sepsis and after major surgery and is associated with microvascular dysfunction and adverse outcome. Procalcitonin is a well-established biomarker in inflammation without known impact on vascular integrity. Objectives: We determined how procalcitonin induces endothelial hyperpermeability and how targeting procalcitonin protects vascular barrier integrity. Methods: In a prospective observational clinical study, procalcitonin levels were assessed in 50 patients who underwent cardiac surgery and correlated to postoperative fluid and vasopressor requirements along with sublingual microvascular functionality. Effects of the procalcitonin signaling pathway on endothelial barrier and adherens junctional integrity were characterized in vitro and verified in mice. Inhibition of procalcitonin activation by dipeptidyl-peptidase 4 (DPP4) was evaluated in murine polymicrobial sepsis and clinically verified in cardiac surgery patients chronically taking the DPP4 inhibitor sitagliptin. Measurements and Main Results: Elevated postoperative procalcitonin levels identified patients with 2-fold increased fluid requirements (P < 0.01), 1.8-fold higher vasopressor demand (P < 0.05), and compromised microcirculation (reduction to 63.5 ± 2.8% of perfused vessels, P < 0.05). Procalcitonin induced 1.4-fold endothelial and 2.3-fold pulmonary capillary permeability (both Ps < 0.001) by destabilizing VE-cadherin. Procalcitonin effects were dependent on activation by DPP4, and targeting the procalcitonin receptor or DPP4 during sepsis-induced hyperprocalcitonemia reduced capillary leakage by 54 ± 10.1% and 60.4 ± 6.9% (both Ps < 0.01), respectively. Sitagliptin before cardiac surgery was associated with augmented microcirculation (74.1 ± 1.7% vs. 68.6 ± 1.9% perfused vessels in non-sitagliptin-medicated patients, P < 0.05) and with 2.3-fold decreased fluid (P < 0.05) and 1.8-fold reduced vasopressor demand postoperatively (P < 0.05). Conclusions: Targeting procalcitonin's action on the endothelium is a feasible means to preserve vascular integrity during systemic inflammation associated with hyperprocalcitonemia.


Assuntos
Dipeptidil Peptidase 4 , Sepse , Animais , Permeabilidade Capilar , Dipeptidil Peptidase 4/metabolismo , Dipeptidil Peptidase 4/farmacologia , Dipeptidil Peptidase 4/uso terapêutico , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Pró-Calcitonina , Sepse/tratamento farmacológico , Sepse/metabolismo
15.
Front Immunol ; 13: 843782, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35529856

RESUMO

Acute kidney injury (AKI) may be induced by different causes, including renal ischemia-reperfusion injury and sepsis, which represent the most common reasons for AKI in hospitalized patients. AKI is defined by reduced urine production and/or increased plasma creatinine. However, this definition does not address the molecular mechanisms of different AKI entities, and uncertainties remain regarding distinct pathophysiological events causing kidney injury in the first place. In particular, sepsis-induced AKI is considered not to be associated with leukocyte infiltration into the kidney, but a direct investigation of this process is missing to this date. In this study, we used two murine AKI models induced by either renal ischemia-reperfusion injury (IRI) or cecal ligation and puncture (CLP) to investigate the contribution of neutrophils to tissue injury and kidney function. By using VEC-Y731F mice, in which neutrophil recruitment is impaired, we analyzed the specific contribution of neutrophil recruitment to the pathogenesis of IRI- and CLP-induced AKI. We observed that the degree of renal injury evaluated by plasma creatinine, urinary biomarkers and histological analyses, following IRI-induction was dependent on neutrophil migration into the kidney, whereas the pathogenesis of CLP-induced AKI was independent of neutrophil recruitment. Furthermore, plasma transfer experiments suggest that the pathogenesis of CLP-induced AKI relies on circulating inflammatory mediators. These results extend our knowledge of the AKI pathogenesis and may help in the development of prophylactic and therapeutic treatments for AKI patients.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Sepse , Injúria Renal Aguda/patologia , Animais , Creatinina , Feminino , Humanos , Isquemia/patologia , Rim/patologia , Masculino , Camundongos , Infiltração de Neutrófilos , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Sepse/patologia
16.
Elife ; 112022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35543413

RESUMO

The proinflammatory alarmins S100A8 and S100A9 are among the most abundant proteins in neutrophils and monocytes but are completely silenced after differentiation to macrophages. The molecular mechanisms of the extraordinarily dynamic transcriptional regulation of S100a8 and S100a9 genes, however, are only barely understood. Using an unbiased genome-wide CRISPR/Cas9 knockout (KO)-based screening approach in immortalized murine monocytes, we identified the transcription factor C/EBPδ as a central regulator of S100a8 and S100a9 expression. We showed that S100A8/A9 expression and thereby neutrophil recruitment and cytokine release were decreased in C/EBPδ KO mice in a mouse model of acute lung inflammation. S100a8 and S100a9 expression was further controlled by the C/EBPδ antagonists ATF3 and FBXW7. We confirmed the clinical relevance of this regulatory network in subpopulations of human monocytes in a clinical cohort of cardiovascular patients. Moreover, we identified specific C/EBPδ-binding sites within S100a8 and S100a9 promoter regions, and demonstrated that C/EBPδ-dependent JMJD3-mediated demethylation of H3K27me3 is indispensable for their expression. Overall, our work uncovered C/EBPδ as a novel regulator of S100a8 and S100a9 expression. Therefore, C/EBPδ represents a promising target for modulation of inflammatory conditions that are characterized by S100a8 and S100a9 overexpression.


Assuntos
Proteína delta de Ligação ao Facilitador CCAAT , Calgranulina A , Calgranulina B , Epigênese Genética , Alarminas , Animais , Proteína delta de Ligação ao Facilitador CCAAT/genética , Calgranulina A/genética , Calgranulina B/genética , Camundongos , Transcrição Gênica
17.
Perfusion ; 37(2): 134-143, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33475044

RESUMO

INTRODUCTION: Due to improved technology and increased application the mortality during extracorporeal membrane oxygenation (ECMO) is constantly declining. Nevertheless, complications including haemorrhage or thrombus formation remain frequent. Local mitigation of coagulation within an ECMO system to prevent thrombus formation on ECMO components and optimizing systemic anticoagulation is an approach to reduce clotting and bleeding complications at once. Foreign surfaces of ECMO systems, activate platelets (PLTs), which besides their major role in coagulation, can trigger the formation of neutrophil extracellular traps (NETs) contributing to robust thrombus formation. The impact of a reduced PLT count on PLT activation and NET formation is of paramount importance and worth investigating. METHODS: In this study platelet poor (PLT-) and native (PLT+) heparinized human blood was circulated in two identical in vitro test circuits for ECMO devices for 6 hours. PLT reduction was achieved by a centrifugation protocol prior to the experiments. To achieve native coagulation characteristics within the test circuits, the initial heparin dose was antagonized by continuous protamine administration. RESULTS: The PLT- group showed significantly lower platelet activation, basal NET formation and limited clot stability measured via thromboelastometry. Fluorescent and scanning electron microscope imaging showed differences in clot composition. Both groups showed equal clot formation within the circuit. CONCLUSIONS: This study demonstrated that the reduction of PLTs within an ECMO system is associated with limited PLT activation and NET formation, which reduces clot stability but is not sufficient to inhibit clot formation per se.


Assuntos
Armadilhas Extracelulares , Trombose , Coagulação Sanguínea/fisiologia , Humanos , Ativação Plaquetária , Contagem de Plaquetas
18.
J Am Soc Nephrol ; 33(2): 259-278, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34907031

RESUMO

Kidney disease is a known risk factor for poor outcomes of COVID-19 and many other serious infections. Conversely, infection is the second most common cause of death in patients with kidney disease. However, little is known about the underlying secondary immunodeficiency related to kidney disease (SIDKD). In contrast to cardiovascular disease related to kidney disease, which has triggered countless epidemiologic, clinical, and experimental research activities or interventional trials, investments in tracing, understanding, and therapeutically targeting SIDKD have been sparse. As a call for more awareness of SIDKD as an imminent unmet medical need that requires rigorous research activities at all levels, we review the epidemiology of SIDKD and the numerous aspects of the abnormal immunophenotype of patients with kidney disease. We propose a definition of SIDKD and discuss the pathogenic mechanisms of SIDKD known thus far, including more recent insights into the unexpected immunoregulatory roles of elevated levels of FGF23 and hyperuricemia and shifts in the secretome of the intestinal microbiota in kidney disease. As an ultimate goal, we should aim to develop therapeutics that can reduce mortality due to infections in patients with kidney disease by normalizing host defense to pathogens and immune responses to vaccines.


Assuntos
COVID-19/etiologia , Síndromes de Imunodeficiência/etiologia , Insuficiência Renal Crônica/complicações , Imunidade Adaptativa , Plaquetas/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/prevenção & controle , Imunofenotipagem , Modelos Imunológicos , Pandemias , Insuficiência Renal Crônica/imunologia , Fatores de Risco , SARS-CoV-2 , Soroconversão
20.
Biomater Sci ; 10(1): 85-99, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34812809

RESUMO

Neutrophil extracellular traps (NETs) are web-like chromatin structures produced and liberated by neutrophils under inflammatory conditions which also promote the activation of the coagulation cascade and thrombus formation. The formation of NETs is quite prominent when blood comes in contact with artificial surfaces like extracorporeal circuits, oxygenator membranes, or intravascular grafts. DNase I as a factor of the host defense system, digests the DNA backbone of NETs, which points out its treatment potential for NET-mediated thrombosis. However, the low serum stability of DNase I restricts its clinical/therapeutic applications. To improve the bioavailability of the enzyme, DNase I was conjugated to the microgels (DNase I MG) synthesized from highly hydrophilic N-(2-hydroxypropyl) methacrylamide (HPMA) and zwitterionic carboxybetaine methacrylamide (CBMAA). The enzyme was successfully conjugated to the microgels without any alternation to its secondary structure. The Km value representing the enzymatic activity of the conjugated DNase I was calculated to be 0.063 µM demonstrating a high enzyme-substrate affinity. The DNase I MGs were protein repellant and were able to digest NETs more efficiently compared to free DNase in a biological media, remarkably even after long-term exposure to the stimulated neutrophils continuously releasing NETs. Overall, the conjugation of DNase I to a non-fouling microgel provides a novel biohybrid platform that can be exploited as non-thrombogenic active microgel-based coatings for blood-contacting surfaces to reduce the NET-mediated inflammation and microthrombi formation.


Assuntos
Armadilhas Extracelulares , Microgéis , Trombose , Desoxirribonuclease I , Humanos , Neutrófilos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...