Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 127(2): 421-433, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35020505

RESUMO

This study aimed to determine whether neural drive is redistributed between muscles during a fatiguing isometric contraction, and if so, whether the initial level of common synaptic input between these muscles constrains this redistribution. We studied two muscle groups: triceps surae (14 participants) and quadriceps (15 participants). Participants performed a series of submaximal isometric contractions and a torque-matched contraction maintained until task failure. We used high-density surface electromyography to identify the behavior of 1,874 motor units from the soleus, gastrocnemius medialis (GM), gastrocnemius lateralis (GL), rectus femoris, vastus lateralis (VL), and vastus medialis (VM). We assessed the level of common drive between muscles in the absence of fatigue using a coherence analysis. We also assessed the redistribution of neural drive between muscles during the fatiguing contraction through the correlation between their cumulative spike trains (index of neural drive). The level of common drive between VL and VM was significantly higher than that observed for the other muscle pairs, including GL-GM. The level of common drive increased during the fatiguing contraction, but the differences between muscle pairs persisted. We also observed a strong positive correlation of neural drive between VL and VM during the fatiguing contraction (r = 0.82). This was not observed for the other muscle pairs, including GL-GM, which exhibited differential changes in neural drive. These results suggest that less common synaptic input between muscles allows for more flexible coordination strategies during a fatiguing task, i.e., differential changes in neural drive across muscles. The role of this flexibility on performance remains to be elucidated.NEW & NOTEWORTHY Redundancy of the neuromuscular system theoretically allows for a redistribution of the neural drive across muscles (i.e., between-muscle compensation) during a fatiguing contraction. Our results suggest that a high level of common input between muscles (e.g., vastus lateralis and medialis) represents a neural constraint making it less likely to redistribute the neural drive across these muscles. In this way, redistribution was only observed across muscles that share little common synaptic input (e.g., gastrocnemius lateralis and medialis).


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Humanos , Adulto Jovem
2.
J Electromyogr Kinesiol ; 58: 102548, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838590

RESUMO

There is a growing interest in decomposing high-density surface electromyography (HDsEMG) into motor unit spike trains to improve knowledge on the neural control of muscle contraction. However, the reliability of decomposition approaches is sometimes questioned, especially because they require manual editing of the outputs. We aimed to assess the inter-operator reliability of the identification of motor unit spike trains. Eight operators with varying experience in HDsEMG decomposition were provided with the same data extracted using the convolutive kernel compensation method. They were asked to manually edit them following established procedures. Data included signals from three lower leg muscles and different submaximal intensities. After manual analysis, 126 ± 5 motor units were retained (range across operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise comparisons × 11 contractions/muscles × 4-28 motor units). The median rate of agreement value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided with the same decomposed data and the same basic instructions, operators converge toward almost identical results. Our data have been made available so that they can be used for training new operators.


Assuntos
Eletromiografia/normas , Potencial Evocado Motor , Músculo Esquelético/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Contração Muscular , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...