Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 43(22): 7061-7, 2004 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-15500343

RESUMO

The mixed-valence double salt K(3)(MnO(4))(2) crystallizes in space group P2(1)/m with Z = 2. The manganese centers Mn1 and Mn2 constitute discrete "permanganate", [Mn(VII)O(4)](-), and "manganate", [Mn(VI)O(4)](2-), ions, respectively. There is a spin-ordering transition to an antiferromagnetic state at ca. T = 5 K. The spin-density distribution in the paramagnetic phase at T = 10 K has been determined by polarized neutron diffraction, confirming that unpaired spin is largely confined to the nominal manganate ion Mn2. Through use of both Fourier refinement and maximum entropy methods, the spin on Mn1 is estimated as 1.75 +/- 1% of one unpaired electron with an upper limit of 2.5%.

2.
J Am Chem Soc ; 126(33): 10472-7, 2004 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-15315463

RESUMO

The recent Glasser-Jenkins method for lattice-energy prediction, applied to an examination of the solid-state thermodynamics of the cation exchanges that occur in electrochromic reactions of Prussian Blue, provides incisive thermodynamic clarification of an ill-understood ion exchange that accompanies particularly the early electrochromic cycles. A volume of 0.246 +/- 0.017 nm(3) formula unit(-1) for the ferrocyanide ion, Fe(II)[(CN)(6)],(4-) is first established and then used, together with other formula unit-volume data, to evaluate the changes of standard enthalpy, entropy, and Gibbs energy in those ion-exchange reactions. The results impressively show by how much the exchange of interstitial Fe(3+) ions by alkali metal ions, usually exemplified by K+, is thermodynamically favored.

3.
Inorg Chem ; 42(19): 6015-23, 2003 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-12971772

RESUMO

The maximum of the color-conferring charge-transfer (CT) band in Prussian Blue (PB) varies with the electrochemically introduced cation M(z+) incorporated (as "supernumerary") for charge neutrality, and the dependence on particular properties of the M(z+) has been sought. With alkali-metal ions, the CT-maximum shifts are in the same sequence as the PB mass changes on M+ insertion; the effect on the CT ground state of the intra-lattice interaction of an M+ with the ferrocyanide CN- moiety (competing with cation hydration), is then implicated in shifts of the maxima, as the ferrocyanide is the donor center in the optical CT. More definitely, for M2+ and Ag+, solubility-products of the insoluble M(z+) ferrocyanides (that provide direct indicators of the intra-lattice M(z+)-[Fe(II)(CN)(6)](4- interactions) show a strong correlation with the spectral shifts. The determining interaction of M(z+) with ferrocyanide within PB is enhanced in some cases by the accessibility of M(z+) oxidation states +/- 1 different from the common values. PB lattice energies and the ground states of the optical CTs thus appear closely interlinked. The electrochemical uptake of appreciable amounts of the M(z+) within the lattices was confirmed by XPS.

4.
Chem Commun (Camb) ; (24): 2988-9, 2002 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-12536780

RESUMO

It is currently important to achieve and understand adjustments of optical properties: "guest cation" induced CT spectral shifts in Prussian Blue are shown to be driven (via its specific effect on the Fe(CN)6 CT-donor entity) by the cation lattice-energy interaction, as inferred from microgravimetry of introduced alkali-metal ions, and from independent solubility correlations for other intercalated cations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA