Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 20(1): 235, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833764

RESUMO

BACKGROUND: Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear. METHODS: To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum. RESULTS: Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation. CONCLUSIONS: We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.


Assuntos
Doença de Alzheimer , Doenças Neuroinflamatórias , Adulto , Camundongos , Humanos , Animais , Idoso , Gliose , Interleucina-6 , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Colinérgicos
2.
Glia ; 71(10): 2456-2472, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37395323

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which patients lose motor functions due to progressive loss of motor neurons in the cortex, brainstem, and spinal cord. Whilst the loss of neurons is central to the disease, it is becoming clear that glia, specifically astrocytes, contribute to the onset and progression of neurodegeneration. Astrocytes play an important role in maintaining ion homeostasis in the extracellular milieu and regulate multiple brain functions by altering their extracellular concentrations. In this study, we have investigated the ability of astrocytes to maintain K+ homeostasis in the brain via direct measurement of the astrocytic K+ clearance rate in the motor and somatosensory cortices of an ALS mouse model (SOD1G93A ). Using electrophysiological recordings from acute brain slices, we show region-specific alterations in the K+ clearance rate, which was significantly reduced in the primary motor cortex but not the somatosensory cortex. This decrease was accompanied by significant changes in astrocytic morphology, impaired conductivity via Kir4.1 channels and low coupling ratio in astrocytic networks in the motor cortex, which affected their ability to form the K+ gradient needed to disperse K+ through the astrocytic syncytium. These findings indicate that the supportive function astrocytes typically provide to motoneurons is diminished during disease progression and provides a potential explanation for the increased vulnerability of motoneurons in ALS.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Animais , Astrócitos , Superóxido Dismutase-1 , Neurônios Motores/fisiologia , Medula Espinal , Modelos Animais de Doenças , Progressão da Doença , Camundongos Transgênicos , Superóxido Dismutase
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446262

RESUMO

The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Animais , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química , Austrália , Doenças Neurodegenerativas/tratamento farmacológico , Encéfalo , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico
4.
ACS Med Chem Lett ; 14(2): 156-162, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36793438

RESUMO

Protein tyrosine phosphatase SHP2 is an oncogenic protein that can regulate different cytokine receptor and receptor tyrosine kinase signaling pathways. We report here the identification of a novel series of SHP2 allosteric inhibitors having an imidazopyrazine 6,5-fused heterocyclic system as the central scaffold that displays good potency in enzymatic and cellular assays. SAR studies led to the identification of compound 8, a highly potent SHP2 allosteric inhibitor. X-ray studies showed novel stabilizing interactions with respect to known SHP2 inhibitors. Subsequent optimization allowed us to identify analogue 10, which possesses excellent potency and a promising PK profile in rodents.

5.
PLoS One ; 16(5): e0251981, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34019583

RESUMO

Coenzyme A (CoA) is a fundamental cofactor involved in a number of important biochemical reactions in the cell. Altered CoA metabolism results in severe conditions such as pantothenate kinase-associated neurodegeneration (PKAN) in which a reduction of the activity of pantothenate kinase isoform 2 (PANK2) present in CoA biosynthesis in the brain consequently lowers the level of CoA in this organ. In order to develop a new drug aimed at restoring the sufficient amount of CoA in the brain of PKAN patients, we looked at its turnover. We report here the results of two experiments that enabled us to measure the half-life of pantothenic acid, free CoA (CoASH) and acetylCoA in the brains and livers of male and female C57BL/6N mice, and total CoA in the brains of male mice. We administered (intrastriatally or orally) a single dose of a [13C3-15N-18O]-labelled coenzyme A precursor (fosmetpantotenate or [13C3-15N]-pantothenic acid) to the mice and measured, by liquid chromatography-mass spectrometry, unlabelled- and labelled-coenzyme A species appearance and disappearance over time. We found that the turnover of all metabolites was faster in the liver than in the brain in both genders with no evident gender difference observed. In the oral study, the CoASH half-life was: 69 ± 5 h (male) and 82 ± 6 h (female) in the liver; 136 ± 14 h (male) and 144 ± 12 h (female) in the brain. AcetylCoA half-life was 74 ± 9 h (male) and 71 ± 7 h (female) in the liver; 117 ± 13 h (male) and 158 ± 23 (female) in the brain. These results were in accordance with the corresponding values obtained after intrastriatal infusion of labelled-fosmetpantotenate (CoASH 124 ± 13 h, acetylCoA 117 ± 11 and total CoA 144 ± 17 in male brain).


Assuntos
Acetilcoenzima A/farmacocinética , Encéfalo/metabolismo , Coenzima A/farmacocinética , Fígado/metabolismo , Ácido Pantotênico/farmacocinética , Acetilcoenzima A/metabolismo , Administração Oral , Animais , Biotransformação , Encéfalo/efeitos dos fármacos , Coenzima A/metabolismo , Feminino , Meia-Vida , Humanos , Injeções Intraventriculares , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismo
6.
J Med Chem ; 63(24): 15785-15801, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33320012

RESUMO

Mutations in the human PANK2 gene are implicated in neurodegenerative diseases such as pantothenate kinase-associated neurodegeneration (PKAN) and result in low levels of coenzyme-A (CoA) in the CNS due to impaired production of phosphopantothenic acid (PPA) from vitamin B5. Restoration of central PPA levels by delivery of exogenous PPA is a recent strategy to reactivate CoA biosynthesis in PKAN patients. Fosmetpantotenate is an oral PPA prodrug. We report here the development of a new PANk2-/- knockout model that allows CoA regeneration in brain cells to be evaluated and describe two new series of cyclic phosphate prodrugs of PPA capable of regenerating excellent levels of CoA in this system. A proof-of-concept study in mouse demonstrates the potential of this new class of prodrugs to deliver PPA to the brain following oral administration and confirms incorporation of the prodrug-derived PPA into CoA.


Assuntos
Ácido Pantotênico/análogos & derivados , Pró-Fármacos/química , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Coenzima A/metabolismo , Ciclização , Modelos Animais de Doenças , Meia-Vida , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Gotículas Lipídicas/química , Gotículas Lipídicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurodegeneração Associada a Pantotenato-Quinase/tratamento farmacológico , Neurodegeneração Associada a Pantotenato-Quinase/patologia , Ácido Pantotênico/química , Ácido Pantotênico/metabolismo , Ácido Pantotênico/uso terapêutico , Pró-Fármacos/metabolismo , Pró-Fármacos/uso terapêutico , Relação Estrutura-Atividade
7.
Front Cell Neurosci ; 14: 577912, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192323

RESUMO

Aging is a complex biological process that increases the risk of age-related cognitive degenerative diseases such as dementia, including Alzheimer's disease (AD), Lewy Body Dementia (LBD), and mild cognitive impairment (MCI). Even non-pathological aging of the brain can involve chronic oxidative and inflammatory stress, which disrupts the communication and balance between the brain and the immune system. There has been an increasingly strong connection found between chronic neuroinflammation and impaired memory, especially in AD. While microglia and astrocytes, the resident immune cells of the central nervous system (CNS), exerting beneficial effects during the acute inflammatory phase, during chronic neuroinflammation they can become more detrimental. Central cholinergic circuits are involved in maintaining normal cognitive function and regulating signaling within the entire cerebral cortex. While neuronal-glial cholinergic signaling is anti-inflammatory and anti-oxidative, central cholinergic neuronal degeneration is implicated in impaired learning, memory sleep regulation, and attention. Although there is evidence of cholinergic involvement in memory, fewer studies have linked the cholinergic anti-inflammatory and anti-oxidant pathways to memory processes during development, normal aging, and disease states. This review will summarize the current knowledge of cholinergic effects on microglia and astroglia, and their role in both anti-inflammatory and anti-oxidant mechanisms, concerning normal aging and chronic neuroinflammation. We provided details on how stimulation of α7 nicotinic acetylcholine (α7nACh) receptors can be neuroprotective by increasing amyloid-ß phagocytosis, decreasing inflammation and reducing oxidative stress by promoting the nuclear factor erythroid 2-related factor 2 (Nrf2) pathways and decreasing the release of pro-inflammatory cytokines. There is also evidence for astroglial α7nACh receptor stimulation mediating anti-inflammatory and antioxidant effects by inhibiting the nuclear factor-κB (NF-κB) pathway and activating the Nrf2 pathway respectively. We conclude that targeting cholinergic glial interactions between neurons and glial cells via α7nACh receptors could regulate neuroinflammation and oxidative stress, relevant to the treatment of several neurodegenerative diseases.

8.
Front Cell Neurosci ; 14: 278, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973460

RESUMO

Glia, a non-excitable cell type once considered merely as the connective tissue between neurons, is nowadays acknowledged for its essential contribution to multiple physiological processes including learning, memory formation, excitability, synaptic plasticity, ion homeostasis, and energy metabolism. Moreover, as glia are key players in the brain immune system and provide structural and nutritional support for neurons, they are intimately involved in multiple neurological disorders. Recent advances have demonstrated that glial cells, specifically microglia and astroglia, are involved in several neurodegenerative diseases including Amyotrophic lateral sclerosis (ALS), Epilepsy, Parkinson's disease (PD), Alzheimer's disease (AD), and frontotemporal dementia (FTD). While there is compelling evidence for glial modulation of synaptic formation and regulation that affect neuronal signal processing and activity, in this manuscript we will review recent findings on neuronal activity that affect glial function, specifically during neurodegenerative disorders. We will discuss the nature of each glial malfunction, its specificity to each disorder, overall contribution to the disease progression and assess its potential as a future therapeutic target.

9.
Front Cell Neurosci ; 13: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114482

RESUMO

Excessive alcohol consumption is often linked to anxiety states and has a major relay center in the anterior part of bed nucleus of stria terminalis (BNST). We analyzed the impact of (i) genetic predisposition to high alcohol preference and consumption, and (ii) alcohol intake on anterior BNST, namely anterolateral (AL), anteromedial (AM), and anteroventral (lateral + medial subdivisions: AVl, AVm) subnuclei. We used two rat lines selectively bred for low- and high-alcohol preference and consumption, named Sardinian alcohol-non preferring (sNP) and -preferring (sP), respectively, the latter showing also inherent anxiety-related behaviors. We analyzed the modulation of calcitonin gene-related peptide (CGRP; exerting anxiogenic effects in BNST), neuropeptide Y (NPY; exerting mainly anxiolytic effects), and microglia activation (neuroinflammation marker, thought to increase anxiety). Calcitonin gene-related peptide-immunofluorescent fibers/terminals did not differ between alcohol-naive sP and sNP rats. Fiber/terminal NPY-immunofluorescent intensity was lower in BNST-AM and BNST-AVm of alcohol-naive sP rats. Activation of microglia (revealed by morphological analysis) was decreased in BNST-AM and increased in BNST-AVm of alcohol-naive sP rats. Prolonged (30 consecutive days), voluntary alcohol intake under the homecage 2-bottle "alcohol vs. water" regimen strongly increased CGRP intensity in BNST of sP rats in a subnucleus-specific manner: in BNST-AL, BNST-AVm, and BNST-AM. CGRP area sum, however, decreased in BNST-AM, without changes in other subnuclei. Alcohol consumption increased NPY expression, in a subnucleus-specific manner, in BNST-AL, BNST-AVl, and BNST-AVm. Alcohol consumption increased many size/shapes parameters in microglial cells, indicative of microglia de-activation. Finally, microglia density was increased in ventral anterior BNST (BNST-AVl, BNST-AVm) by alcohol consumption. In conclusion, genetic predisposition of sP rats to high alcohol intake could be in part mediated by anterior BNST subnuclei showing lower NPY expression and differential microglia activation. Alcohol intake in sP rats produced complex subnucleus-specific changes in BNST, affecting CGRP/NPY expression and microglia and leading to hypothesize that these changes might contribute to the anxiolytic effects of voluntarily consumed alcohol repeatedly observed in sP rats.

10.
ACS Med Chem Lett ; 10(4): 481-486, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996783

RESUMO

The application of class I HDAC inhibitors as cancer therapies is well established, but more recently their development for nononcological indications has increased. We report here on the generation of improved class I selective human HDAC inhibitors based on an ethylketone zinc binding group (ZBG) in place of the hydroxamic acid that features the majority of HDAC inhibitors. We also describe a novel set of HDAC3 isoform selective inhibitors that show stronger potency and selectivity than the most commonly used HDAC3 selective tool compound RGFP966. These compounds are again based on an alternative ZBG with respect to the ortho-anilide that is featured in HDAC3 selective compounds reported to date.

11.
J Neuroimmunol ; 323: 94-104, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30196840

RESUMO

Activation states of immune cells (among them, the so-called pro- or anti-inflammatory states) influence the pathogenesis of multiple sclerosis (MS). The neuropeptide calcitonin gene-related peptide (CGRP) can exert a pro- or anti-inflammatory role in a context-dependent manner. In mice CGRP was found to attenuate the development of experimental autoimmune encephalomyelitis (EAE, a common MS animal model). We analyzed CGRP effects on the expression of cytokines and markers of activation states, as well as its intracellular cascade, following intrathecal administration during EAE immunization. Real Time quantitative-PCR (RT-PCR) showed that IL-1beta and IL-6 (associated to a pro-inflammatory state in EAE), but also Ym1 (also known as Chil3), Arg1 and CD163 (associated to an anti-inflammatory state in EAE) were decreased in the encephalon (devoid of cerebellum). In the cerebellum itself, IL-1beta and Ym1 were decreased. TNF-alpha (associated to a pro-inflammatory state in EAE), but also IL-10 (associated to another type of anti-inflammatory state) and BDNF were unchanged in these two regions. No changes were detected in the spinal cord. Additional tendencies toward a change (as revealed by RT-PCR) were again decreases: IL-10 in the encephalon and Arg1 in the spinal cord. CGRP decreased percentage of Ym1+/CD68+ immunoreactive cells and cell density of infiltrates in the cervical spinal cord pia mater. Instead, Ym1 in the underlying parenchyma and at thoracic and lumbar levels, as well as Arg1, were unchanged. In cultured microglia the neuropeptide decreased Ym1, but not Arg1, immunoreactivity. Inducible NOS (iNOS) was unchanged in spinal cord microglia and astrocytes. The neuropeptide increased the activation of ERK1/2 in the astrocytes of the spinal cord and in culture, but did not influence the activation of ERK1/2 or p38 in the spinal cord microglia. Finally, in areas adjacent to infiltration sites CGRP-treated microglia showed a larger ramification radius. In conclusion, CGRP-induced EAE amelioration was associated to a concomitant, context-dependent decrease in the expression of markers belonging to both pro- or anti-inflammatory activation states of immune cells. It can be hypothesized that CGRP-induced EAE attenuation is obtained through a novel mechanism that promotes down-regulation of immune cell activation that facilitates the establishment of a beneficial environment in EAE provided possibly also by other factors.


Assuntos
Arginase/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/uso terapêutico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Interleucina-1beta/antagonistas & inibidores , Interleucina-6/antagonistas & inibidores , Lectinas/antagonistas & inibidores , Receptores de Superfície Celular/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos de Diferenciação Mielomonocítica/biossíntese , Antígenos de Diferenciação Mielomonocítica/genética , Arginase/biossíntese , Arginase/genética , Biomarcadores/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Células Cultivadas , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/metabolismo , Feminino , Expressão Gênica , Interleucina-1beta/biossíntese , Interleucina-1beta/genética , Interleucina-6/biossíntese , Interleucina-6/genética , Lectinas/biossíntese , Lectinas/genética , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , beta-N-Acetil-Hexosaminidases/biossíntese , beta-N-Acetil-Hexosaminidases/genética
12.
Nat Prod Res ; 31(4): 397-403, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28010138

RESUMO

Two conformationally constrained compounds similar to chicoric acid but lacking the catechol and carboxyl groups were prepared. In these analogues, the single bond between the two caffeoyl fragments has been replaced with a chiral oxirane ring and both aromatic residues modified protecting completely or partially the catechol moiety as methyl ether. Preliminary molecular modelling studies carried out on the two analogues showed interactions near the active site of HIV integrase; however, in comparison with raltegravir, the biological evaluation confirmed that CAA-1 and CAA-2 were unable to inhibit infection at lower concentration.


Assuntos
Ácidos Cafeicos/síntese química , Inibidores de Integrase de HIV/síntese química , Succinatos/síntese química , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacologia , Inibidores de Integrase de HIV/química , Inibidores de Integrase de HIV/farmacologia , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Succinatos/química , Succinatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...