Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Open Forum Infect Dis ; 6(3): ofz001, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31660384

RESUMO

BACKGROUND: A serosurvey of healthy blood donors provided evidence of hemorrhagic fever and arthropod-borne virus infections in Uganda. METHODS: Antibody prevalence to arthropod-borne and hemorrhagic fever viruses in human sera was determined using enzyme-linked immunosorbent assay (ELISA) and plaque reduction neutralization test (PRNT). RESULTS: The greatest antibody prevalence determined by ELISA was to chikungunya virus (CHIKV) followed in descending order by West Nile virus (WNV), Crimean-Congo hemorrhagic fever virus (CCHFV), Ebola virus (EBOV), dengue virus (DEN), yellow fever virus (YFV), Rift Valley fever virus (RVFV), Marburg virus (MARV), and Lassa virus (LASV). Further investigation of CHIKV-positive sera demonstrated that the majority of antibody responses may likely be the result of exposure to the closely related alphavirus o'nyong-nyong virus (ONNV). CONCLUSIONS: As the use of highly specific and sensitive polymerase chain reaction-based assays becomes the diagnostic standard without the corresponding use of the less sensitive but more broadly reactive immunological-based assays, emerging and re-emerging outbreaks will be initially missed, illustrating the need for an orthogonal system for the detection and identification of viruses causing disease.

2.
Am J Trop Med Hyg ; 98(1): 211-215, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165231

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus within the family Bunyaviridae. Infection can result in general myalgia, fever, and headache with some patients developing hemorrhagic fever with mortality rates ranging from 5% to 30%. CCHFV has a wide geographic range that includes Africa, Asia, the Middle East, and Europe with nucleotide sequence variation approaching 20% across the three negative-sense RNA genome segments. While phylogenetic clustering generally aligns with geographic origin of individual strains, distribution can be wide due to tick/CCHFV dispersion via migrating birds. This sequence diversity negatively impacts existing molecular diagnostic assays, leading to false negative diagnostic results. Here, we updated a previously developed CCHFV real-time reverse transcription polymerase chain reaction (RT-PCR) assay to include strains not detected using that original assay. Deep sequencing of eight different CCHFV strains, including three that were not detectable using the original assay, identified sequence variants within this assay target region. New primers and probe based on the sequencing results and newly deposited sequences in GenBank greatly improved assay sensitivity and inclusivity with the exception of the genetically diverse strain AP92. For example, we observed a four log improvement in IbAr10200 detection with a new limit of detection of 256 PFU/mL. Subsequent comparison of this assay to another commonly used CCHFV real-time RT-PCR assay targeting a different region of the viral genome showed improved detection, and both assays could be used to mitigate CCHFV diversity for diagnostics. Overall, this work demonstrated the importance of continued viral sequencing efforts for robust diagnostic assay development.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , DNA Viral/genética , Febre Hemorrágica da Crimeia/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
3.
Sci Rep ; 7(1): 14756, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116224

RESUMO

Ebola virus disease (EVD) is a serious illness with mortality rates of 20-90% in various outbreaks. EVD is characterized by robust virus replication and strong host inflammatory response. Analyzing host immune responses has increasingly involved multimodal approaches including transcriptomics to profile gene expression. We studied cynomolgus macaques exposed to Ebola virus Makona via different routes with the intent of comparing RNA-Seq to a NanoString nCounter codeset targeting 769 non-human primate (NHP) genes. RNA-Seq analysis of serial blood samples showed different routes led to the same overall transcriptional response seen in previously reported EBOV-exposed NHP studies. Both platforms displayed a strong correlation in gene expression patterns, including a strong induction of innate immune response genes at early times post-exposure, and neutrophil-associated genes at later time points. A 41-gene classifier was tested in both platforms for ability to cluster samples by infection status. Both NanoString and RNA-Seq could be used to predict relative abundances of circulating immune cell populations that matched traditional hematology. This demonstrates the complementarity of RNA-Seq and NanoString. Moreover, the development of an NHP-specific NanoString codeset should augment studies of filoviruses and other high containment infectious diseases without the infrastructure requirements of RNA-Seq technology.


Assuntos
Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/genética , Transcriptoma , Animais , Modelos Animais de Doenças , Ebolavirus/patogenicidade , Doença pelo Vírus Ebola/imunologia , Humanos , Imunidade Inata , Imunidade nas Mucosas , Macaca fascicularis , Análise de Sequência de RNA , Transdução de Sinais , Virulência
4.
J Virol Methods ; 248: 136-144, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28668710

RESUMO

A method for accurate quantitation of virus particles has long been sought, but a perfect method still eludes the scientific community. Electron Microscopy (EM) quantitation is a valuable technique because it provides direct morphology information and counts of all viral particles, whether or not they are infectious. In the past, EM negative stain quantitation methods have been cited as inaccurate, non-reproducible, and with detection limits that were too high to be useful. To improve accuracy and reproducibility, we have developed a method termed Scanning Transmission Electron Microscopy - Virus Quantitation (STEM-VQ), which simplifies sample preparation and uses a high throughput STEM detector in a Scanning Electron Microscope (SEM) coupled with commercially available software. In this paper, we demonstrate STEM-VQ with an alphavirus stock preparation to present the method's accuracy and reproducibility, including a comparison of STEM-VQ to viral plaque assay and the ViroCyt Virus Counter.


Assuntos
Microscopia Eletrônica de Transmissão e Varredura/instrumentação , Microscopia Eletrônica de Varredura/métodos , Carga Viral/métodos , Vírus/isolamento & purificação , Vírus/ultraestrutura , Microscopia Eletrônica de Varredura/instrumentação , Reprodutibilidade dos Testes , Software
5.
J Vis Exp ; (125)2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28745647

RESUMO

Transmission electron microscopy (TEM) is used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. Most biological materials do not contain dense elements capable of scattering electrons to create an image; therefore, a negative stain, which places dense heavy metal salts around the sample, is required. In order to visualize viruses in suspension under the TEM they must be applied to small grids coated with a transparent surface only nanometers thick. Due to their small size and fragility, these grids are difficult to handle and easily moved by air currents. The thin surface is easily damaged, leaving the sample difficult or impossible to image. Infectious viruses must be handled in a biosafety cabinet (BSC) and some require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL)-3 and -4 is especially challenging because these environments are more turbulent and technicians are required to wear personal protective equipment (PPE), which decreases dexterity. In this study, we evaluated a new device to assist in negative staining viruses in biocontainment. The device is a capsule that works as a specialized pipette tip. Once grids are loaded into the capsule, the user simply aspirates reagents into the capsule to deliver the virus and stains to the encapsulated grid, thus eliminating user handling of grids. Although this technique was designed specifically for use in BSL-3 or -4 biocontainment, it can ease sample preparation in any lab environment by enabling easy negative staining of virus. This same method can also be applied to prepare negative stained TEM specimens of nanoparticles, macromolecules and similar specimens.


Assuntos
Cápsulas/uso terapêutico , Microscopia Eletrônica de Transmissão/métodos , Coloração Negativa/métodos , Manejo de Espécimes
6.
Hum Vaccin Immunother ; 13(1): 169-179, 2017 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-27870591

RESUMO

Venezuelan equine encephalitis virus (VEEV) is an important human and animal alphavirus pathogen transmitted by mosquitoes. The virus is endemic in Central and South America, but has also caused equine outbreaks in southwestern areas of the United States. In an effort to better understand the molecular mechanisms of the development of immunity to this important pathogen, we performed transcriptional analysis from whole, unfractionated human blood of patients who had been immunized with the live-attenuated vaccine strain of VEEV, TC-83. We compared changes in the transcriptome between naïve individuals who were mock vaccinated with saline to responses of individuals who received TC-83. Significant transcriptional changes were noted at days 2, 7, and 14 following vaccination. The top canonical pathways revealed at early and intermediate time points (days 2 and 7) included the involvement of the classic interferon response, interferon-response factors, activation of pattern recognition receptors, and engagement of the inflammasome. By day 14, the top canonical pathways included oxidative phosphorylation, the protein ubiquitination pathway, natural killer cell signaling, and B-cell development. Biomarkers were identified that differentiate between vaccinees and control subjects, at early, intermediate, and late stages of the development of immunity as well as markers which were common to all 3 stages following vaccination but distinct from the sham-vaccinated control subjects. The study represents a novel examination of molecular processes that lead to the development of immunity against VEEV in humans and which may be of value as diagnostic targets, to enhance modern vaccine design, or molecular correlates of protection.


Assuntos
Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Perfilação da Expressão Gênica , Vacinas Virais/administração & dosagem , Vacinas Virais/imunologia , Adulto , Animais , Encefalite Viral , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Adulto Jovem
7.
J Virol Methods ; 242: 9-13, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28012899

RESUMO

Viral preparations are essential components in diagnostic research and development. The production of large quantities of virus traditionally is done by infecting numerous tissue culture flasks or roller bottles, which require large incubators and/or roller bottle racks. The Corning HYPERFlask® is a multilayer flask that uses a gas permeable film to provide gas exchange between the cells and culture medium and the atmospheric environment. This study evaluated the suitability of the HYPERFlask for production of Lassa, Ebola, Bundibugyo, Reston, and Marburg viruses and compared it to more traditional methods using tissue culture flasks and roller bottles. The HYPERFlask produced cultures were equivalent in virus titer and indistinguishable in immunodiagnostic assays. The use of the Corning HYPERFlask for viral production is a viable alternative to traditional tissue culture flasks and roller bottles. HYPERFlasks allow for large volumes of virus to be produced in a small space without specialized equipment.


Assuntos
Ebolavirus/crescimento & desenvolvimento , Vírus Lassa/crescimento & desenvolvimento , Marburgvirus/crescimento & desenvolvimento , Cultura de Vírus/instrumentação , Replicação Viral , Animais , Chlorocebus aethiops , Meios de Cultura , Ebolavirus/isolamento & purificação , Vírus Lassa/isolamento & purificação , Marburgvirus/isolamento & purificação , Células Vero , Cultura de Vírus/métodos
8.
J Virol Methods ; 238: 70-76, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27751950

RESUMO

Transmission electron microscopy can be used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. In a transmission electron microscope (TEM), the image is created by passing an electron beam through a specimen with contrast generated by electron scattering from dense elements in the specimen. Viruses do not normally contain dense elements, so a negative stain that places dense heavy metal salts around the sample is added to create a dark border. To prepare a virus sample for a negative stain transmission electron microscopy, a virus suspension is applied to a TEM grid specimen support, which is a 3mm diameter fragile specimen screen coated with a few nanometers of plastic film. Then, deionized (dI) water rinses and a negative stain solution are applied to the grid. All infectious viruses must be handled in a biosafety cabinet (BSC) and many require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL) 3 and 4 is especially challenging because the support grids are small, fragile, and easily moved by air currents. In this study we evaluated a new device for negative staining viruses called mPrep/g capsule. It is a capsule that holds up to two TEM grids during all processing steps and for storage after staining is complete. This study reports that the mPrep/g capsule method is valid and effective to negative stain virus specimens, especially in high containment laboratory environments.


Assuntos
Contenção de Riscos Biológicos , Microscopia Eletrônica de Transmissão/métodos , Coloração Negativa/métodos , Manejo de Espécimes/métodos , Vírus/ultraestrutura , Vírus Chikungunya/ultraestrutura , Contenção de Riscos Biológicos/métodos , Ebolavirus/ultraestrutura , Microscopia Eletrônica de Transmissão/instrumentação , Microscopia Eletrônica de Transmissão/normas , Vírus/isolamento & purificação
9.
PLoS One ; 11(3): e0150919, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27002733

RESUMO

The creation of licensed medical countermeasures against Select Agents such as Ebola virus (EBOV) is critically dependent on the use of standardized reagents, assays, and animal models. We performed full genome reconstruction, population genomics, contaminant analysis, and characterization of the glycoprotein gene editing site of historical United States Army Medical Research Institute of Infectious Diseases (USAMRIID) nonhuman-primate challenge stock Ebola virus Kikwit "R4368" and its 2014 replacement "R4415." We also provide characterization of the master stock used to create "R4415." The obtained data are essential to understanding the quality of the seed stock reagents used in pivotal animal studies that have been used to inform medical countermeasure development. Furthermore, these data might add to the understanding of the influence of EBOV variant populations on pathogenesis and disease outcome and inform attempts to avoid the evolution of EBOV escape mutants in response to current therapeutics. Finally, as the primary challenge stocks have changed over time, these data will provide a baseline for understanding and correlating past and future animal study results.


Assuntos
Ebolavirus/genética , Doença pelo Vírus Ebola/virologia , Primatas/virologia , Academias e Institutos , Animais , Genômica/métodos , Glicoproteínas/genética , Estados Unidos
10.
Viruses ; 7(3): 857-72, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25710889

RESUMO

Development and evaluation of medical countermeasures for diagnostics, vaccines, and therapeutics requires production of standardized, reproducible, and well characterized virus preparations. For filoviruses this includes plaque assay for quantitation of infectious virus, transmission electron microscopy (TEM) for morphology and quantitation of virus particles, and real-time reverse transcription PCR for quantitation of viral RNA (qRT-PCR). The ViroCyt® Virus Counter (VC) 2100 (ViroCyt, Boulder, CO, USA) is a flow-based instrument capable of quantifying virus particles in solution. Using a proprietary combination of fluorescent dyes that stain both nucleic acid and protein in a single 30 min step, rapid, reproducible, and cost-effective quantification of filovirus particles was demonstrated. Using a seed stock of Ebola virus variant Kikwit, the linear range of the instrument was determined to be 2.8E+06 to 1.0E+09 virus particles per mL with coefficient of variation ranging from 9.4% to 31.5% for samples tested in triplicate. VC particle counts for various filovirus stocks were within one log of TEM particle counts. A linear relationship was established between the plaque assay, qRT-PCR, and the VC. VC results significantly correlated with both plaque assay and qRT-PCR. These results demonstrated that the VC is an easy, fast, and consistent method to quantify filoviruses in stock preparations.


Assuntos
Ebolavirus/isolamento & purificação , Carga Viral/métodos , Animais , Humanos , Coloração e Rotulagem/métodos , Fatores de Tempo
11.
Viruses ; 6(11): 4760-99, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25421896

RESUMO

In 2014, Ebola virus (EBOV) was identified as the etiological agent of a large and still expanding outbreak of Ebola virus disease (EVD) in West Africa and a much more confined EVD outbreak in Middle Africa. Epidemiological and evolutionary analyses confirmed that all cases of both outbreaks are connected to a single introduction each of EBOV into human populations and that both outbreaks are not directly connected. Coding-complete genomic sequence analyses of isolates revealed that the two outbreaks were caused by two novel EBOV variants, and initial clinical observations suggest that neither of them should be considered strains. Here we present consensus decisions on naming for both variants (West Africa: "Makona", Middle Africa: "Lomela") and provide database-compatible full, shortened, and abbreviated names that are in line with recently established filovirus sub-species nomenclatures.


Assuntos
Ebolavirus/classificação , Doença pelo Vírus Ebola/virologia , Terminologia como Assunto , República Democrática do Congo/epidemiologia , Surtos de Doenças , Ebolavirus/genética , Ebolavirus/isolamento & purificação , Guiné/epidemiologia , Doença pelo Vírus Ebola/epidemiologia , Humanos , Filogenia , RNA Viral/genética , Análise de Sequência de DNA
12.
Emerg Infect Dis ; 20(7): 1176-82, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24959946

RESUMO

Sierra Leone in West Africa is in a Lassa fever-hyperendemic region that also includes Guinea and Liberia. Each year, suspected Lassa fever cases result in submission of ≈500-700 samples to the Kenema Government Hospital Lassa Diagnostic Laboratory in eastern Sierra Leone. Generally only 30%-40% of samples tested are positive for Lassa virus (LASV) antigen and/or LASV-specific IgM; thus, 60%-70% of these patients have acute diseases of unknown origin. To investigate what other arthropod-borne and hemorrhagic fever viral diseases might cause serious illness in this region and mimic Lassa fever, we tested patient serum samples that were negative for malaria parasites and LASV. Using IgM-capture ELISAs, we evaluated samples for antibodies to arthropod-borne and other hemorrhagic fever viruses. Approximately 25% of LASV-negative patients had IgM to dengue, West Nile, yellow fever, Rift Valley fever, chikungunya, Ebola, and Marburg viruses but not to Crimean-Congo hemorrhagic fever virus.


Assuntos
Febres Hemorrágicas Virais/diagnóstico , Vírus Lassa/imunologia , Viroses/diagnóstico , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Antígenos Virais/sangue , Antígenos Virais/imunologia , Artrópodes/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febres Hemorrágicas Virais/sangue , Febres Hemorrágicas Virais/imunologia , Humanos , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , Serra Leoa , Viroses/sangue , Viroses/imunologia , Viroses/virologia
13.
PLoS One ; 7(11): e50316, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209706

RESUMO

To identify polymorphic sites that could be used as biomarkers of Ebola virus passage history, we repeatedly amplified Ebola virus (Kikwit variant) in vitro and in vivo and performed deep sequencing analysis of the complete genomes of the viral subpopulations. We then determined the sites undergoing selection during passage in Vero E6 cells. Four locations within the Ebola virus Kikwit genome were identified that together segregate cell culture-passaged virus and virus obtained from infected non-human primates. Three of the identified sites are located within the glycoprotein gene (GP) sequence: the poly-U (RNA editing) site at position 6925, as well as positions 6677, and 6179. One site was found in the VP24 gene at position 10833. In all cases, in vitro and in vivo, both populations (majority and minority variants) were maintained in the viral swarm, with rapid selections occurring after a few passages or infections. This analysis approach will be useful to differentiate whether filovirus stocks with unknown history have been passaged in cell culture and may support filovirus stock standardization for medical countermeasure development.


Assuntos
Ebolavirus/genética , Genoma Viral , Animais , Técnicas de Cultura de Células , Análise por Conglomerados , Marcadores Genéticos , Glicoproteínas/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/virologia , Mutação , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Primatas/genética , RNA Viral/genética , Análise de Sequência de DNA , Análise de Sequência de RNA , Células Vero , Proteínas Virais/genética
14.
Emerg Infect Dis ; 17(10): 1940-1, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22000377

RESUMO

In response to an outbreak of Crimean-Congo hemorrhagic fever in western Afghanistan, we measured immunoglobulin G seroprevalence among household members and their animals. Seroprevalence was 11.2% and 75.0% in humans (n = 330) and livestock (n = 132), respectively. Persons with frequent exposure to cattle had an elevated risk of being immunoglobulin G positive.


Assuntos
Surtos de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/epidemiologia , Afeganistão/epidemiologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Bovinos , Febre Hemorrágica da Crimeia/diagnóstico , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Prevalência , Fatores de Risco , Ovinos/virologia
15.
Mol Cell Probes ; 24(4): 219-28, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20412852

RESUMO

Flaviviruses are a highly diverse group of RNA viruses classified within the genus Flavivirus, family Flaviviridae. Most flaviviruses are arthropod-borne, requiring a mosquito or tick vector. Several flaviviruses are highly pathogenic to humans; however, their high genetic diversity and immunological relatedness makes them extremely challenging to diagnose. In this study, we developed and evaluated a broad-range Flavivirus assay designed to detect both tick- and mosquito-borne flaviviruses by using RT-PCR/electrospray ionization mass spectrometry (RT-PCR/ESI-MS) on the Ibis T5000 platform. The assay was evaluated with a panel of 13 different flaviviruses. All samples were correctly identified to the species level. To determine the limit of detection for the mosquito-borne primer sets, serial dilutions of RNA from West Nile virus (WNV) were assayed and could be detected down to an equivalent viral titer of 0.2 plaque-forming units/mL. Analysis of flaviviruses in their natural biological background included testing Aedes aegypti mosquitoes that were laboratory-infected with dengue-1 virus. The assay accurately identified the virus within infected mosquitoes, and we determined the average viral genome per mosquito to be 2.0 x 10(6). Using human blood, serum, and urine spiked with WNV and mouse blood and brain tissues from Karshi virus-infected mice, we showed that these clinical matrices did not inhibit the detection of these viruses. Finally, we used the assay to test field-collected Ixodes scapularis ticks collected from sites in New York and Connecticut. We found 16/322 (5% infection rate) ticks positive for deer tick virus, a subtype of Powassan virus. In summary, we developed a single high-throughput Flavivirus assay that could detect multiple tick- and mosquito-borne flaviviruses and thus provides a new analytical tool for their medical diagnosis and epidemiological surveillance.


Assuntos
Vetores de Doenças , Flavivirus/genética , Flavivirus/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Composição de Bases/genética , Sequência de Bases , Culicidae/virologia , Primers do DNA/metabolismo , Vírus da Dengue/genética , Vírus da Dengue/isolamento & purificação , Vírus da Encefalite Transmitidos por Carrapatos/genética , Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Infecções por Flavivirus/diagnóstico , Infecções por Flavivirus/virologia , Camundongos , Dados de Sequência Molecular , Sensibilidade e Especificidade , Alinhamento de Sequência , Carrapatos/virologia , Carga Viral/genética , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/isolamento & purificação
16.
Infect Immun ; 76(12): 5790-801, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18852240

RESUMO

In 2001, a bioterrorism attack involving Bacillus anthracis spore-laced letters resulted in 22 cases of inhalation anthrax, with five fatalities. This incident identified gaps in our health care system and precipitated a renewed interest in identifying both therapeutics and rapid diagnostic assays. To address those gaps, well-characterized animal models that resemble the human disease are needed. In addition, a rapid assay for a reliable diagnostic marker is key to the success of these efforts. In this study, we exposed African green monkeys to B. anthracis spores; examined clinical signs and physiological parameters, including fever, heart rate, complete blood count, and bacteremia; and evaluated the PCR assay and electrochemiluminescence (ECL) immunoassay for the biomarkers protective antigen and capsule. The results demonstrated that although there were neither objective clinical nor physiological signs that consistently identified either infection or the onset of clinical anthrax disease, the African green monkey is a suitable animal model exhibiting a disease course similar to that observed in the rhesus model and humans. We also demonstrated that detection of the biomarkers protective antigen and capsule correlated with bacterial loads in the blood of these nonhuman primates. The ECL immunoassay described here is simple and sensitive enough to provide results in one to two hours, making this assay a viable option for use in the diagnosis of anthrax, leading to timely initiation of treatment, which is a key component of B. anthracis therapeutic development.


Assuntos
Antraz/diagnóstico , Antígenos de Bactérias/sangue , Modelos Animais de Doenças , Animais , Antraz/patologia , Antraz/fisiopatologia , Antígenos de Bactérias/imunologia , Cápsulas Bacterianas/sangue , Cápsulas Bacterianas/imunologia , Biomarcadores/sangue , Chlorocebus aethiops , Feminino , Imunoensaio , Exposição por Inalação , Medições Luminescentes , Masculino , Reação em Cadeia da Polimerase
17.
Hybridoma (Larchmt) ; 24(5): 236-43, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16225423

RESUMO

Monoclonal antibodies (MAbs) against ricin toxin (RT) and its subunits were produced in mice. The MAbs were initially selected based upon the ability to either bind ricin or the individual subunits in a solid-phase enzyme-linked immunosorbent assay (ELISA). Several candidates were selected for further evaluation, including their ability to inhibit ricin intoxication in vitro and their utility as immunodiagnostic reagents. Although their ability to capture antigen when bound to the solid phase was poor, some MAbs demonstrated potential utility as detection reagents in solid-phase immunoassays. Several MAbs were also able to inhibit ricin-mediated eukaryotic cell cytotoxicity in vitro. These MAbs may prove useful for preventing and/or treating ricin intoxication.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Células Epiteliais/fisiologia , Ricina/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ensaio de Imunoadsorção Enzimática/métodos , Células Epiteliais/efeitos dos fármacos , Camundongos , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/imunologia , Ricina/antagonistas & inibidores
18.
Lab Invest ; 84(9): 1200-8, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15208646

RESUMO

During the summer of 2003, an outbreak of human monkeypox occurred in the Midwest region of the United States. In all, 52 rodents suspected of being infected with monkeypox virus were collected from an exotic pet dealer and from private homes. The rodents were euthanized and submitted for testing to the United States Army Medical Research Institute of Infectious Diseases by the Galesburg Animal Disease Laboratory, Illinois Department of Agriculture. The rodent tissue samples were appropriately processed and then tested by using an integrated approach involving real-time polymerase chain reaction (PCR) assays, an antigen-detection immunoassay, and virus culture. We designed and extensively tested two specific real-time PCR assays for rapidly detecting monkeypox virus DNA using the Vaccinia virus F3L and N3R genes as targets. The assays were validated against panels of orthopox viral and miscellaneous bacterial DNAs. A pan-orthopox electrochemiluminescence (ECL) assay was used to further confirm the presence of Orthopoxvirus infection of the rodents. Seven of 12 (58%) animals (seven of 52 (15%) of all animals) tested positive in both monkeypox-specific PCR assays and two additional pan-orthopox PCR assays (in at least one tissue). The ECL results showed varying degrees of agreement with PCR. One hamster and three gerbils were positive by both PCR and ECL for all tissues tested. In addition, we attempted to verify the presence of monkeypox virus by culture on multiple cell lines, by immunohistology, and by electron microscopy, with negative results. Sequencing the PCR products from the samples indicated 100% identity with monkeypox virus strain Zaire-96-I-16 (a human isolate from the Congo). These real-time PCR and ECL assays represent a significant addition to the battery of tests for the detection of various orthopoxviruses. In light of the recent monkeypox virus transmissions, early detection of the virus is crucial for both natural outbreaks and potential acts of bioterrorism.


Assuntos
Bioensaio/veterinária , Surtos de Doenças/veterinária , Monkeypox virus/isolamento & purificação , Mpox/veterinária , Reação em Cadeia da Polimerase/veterinária , Doenças dos Roedores/diagnóstico , Taq Polimerase , Animais , Bioensaio/métodos , DNA Viral/genética , DNA Viral/isolamento & purificação , Eletroquímica , Illinois/epidemiologia , Medições Luminescentes , Mpox/diagnóstico , Mpox/epidemiologia , Mpox/virologia , Monkeypox virus/genética , Monkeypox virus/imunologia , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/virologia
19.
J Med Entomol ; 39(1): 248-50, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11931267

RESUMO

As part of an evaluation of potential vectors of arboviruses during a Rift Valley fever (RVF) outbreak in the Nile Valley of Egypt in August 1993, we collected mosquitoes in villages with known RVF viral activity. Mosquitoes were sorted to species, pooled, and processed for virus isolation both by intracerebral inoculation into suckling mice and by inoculation into cell culture. A total of 33 virus isolates was made from 36,024 mosquitoes. Viruses were initially identified by indirect fluorescent antibody testing and consisted of 30 flaviviruses (all members of the Japanese encephalitis complex, most probably West Nile [WN] virus) and three alphaviruses (all members of western equine encephalitis complex, most probably Sindbis). The identity of selected viruses was confirmed by reverse transcriptase-polymerase chain reaction and sequencing. Culex antennatus (Becker) and Culex perexiguus Theobald accounted for five (17%) and 23 (77%) of the WN virus isolations, respectively. Despite isolation of viruses from 32 pools of mosquitoes (both WN and Sindbis viruses were isolated from a single pool), RVF virus was not isolated from these mosquitoes, even though most of them are known competent vectors collected during an ongoing RVF outbreak. Thus, it should be remembered, that even during a known arbovirus outbreak, other arboviruses may still be circulating and causing disease.


Assuntos
Anopheles/virologia , Culex/virologia , Surtos de Doenças , Febre do Vale de Rift/epidemiologia , Sindbis virus/isolamento & purificação , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Culicidae/virologia , DNA Viral/análise , Egito/epidemiologia , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Febre do Vale de Rift/virologia , Sindbis virus/genética , Sindbis virus/imunologia , Vírus do Nilo Ocidental/genética , Vírus do Nilo Ocidental/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...