Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38559148

RESUMO

The contact structure between vertebrate hosts and arthropod vectors plays a key role in the spread of arthropod-borne viruses (arboviruses); thus, it is important to determine whether arbovirus infection of either host or vector alters vector feeding behavior. Here we leveraged a study of the replication dynamics of two arboviruses isolated from their ancestral cycles in paleotropical forests, sylvatic dengue-2 (DENV-2) and Zika (ZIKV), in one non-human primate (NHP) species from the paleotropics (cynomolgus macaques, Macaca fascicularis) and one from the neotropics (squirrel monkeys, Saimiri boliviensis) to test the effect of both vector and host infection with each virus on completion of blood feeding (engorgement) of the mosquito Aedes albopictus. Although mosquitoes were starved and given no choice of hosts, engorgement rates varied dramatically, from 0% to 100%. While neither vector nor host infection systematically affected engorgement, NHP species and body temperature at the time of feeding did. We also interrogated the effect of repeated mosquito bites on cytokine expression and found that epidermal growth factor (EGF) and macrophage migration inhibitory factor (MIF) concentrations were dynamically associated with exposure to mosquito bites. This study highlights the importance of incorporating individual-level heterogeneity of vector biting in arbovirus transmission models.

2.
Nat Commun ; 15(1): 2682, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538621

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.


Assuntos
Aedes , Vírus da Dengue , Dengue , Infecção por Zika virus , Zika virus , Animais , Humanos , Viremia
3.
Heliyon ; 10(6): e27934, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38545168

RESUMO

Ilhéus virus (ILHV)(Flaviviridae:Orthoflavivirus) is an arthropod-borne virus (arbovirus) endemic to Central and South America and the Caribbean. First isolated in 1944, most of our knowledge derives from surveillance and seroprevalence studies. These efforts have detected ILHV in a broad range of mosquito and vertebrate species, including humans, but laboratory investigations of pathogenesis and vector competence have been lacking. Here, we develop an immune intact murine model with several ages and routes of administration. Our model closely recapitulates human neuroinvasive disease with ILHV strain- and mouse age-specific virulence, as well as a uniformly lethal Ifnar-/- A129 immunocompromised model. Replication kinetics in several vertebrate and invertebrate cell lines demonstrate that ILHV is capable of replicating to high titers in a wide variety of potential host and vector species. Lastly, vector competence studies provide strong evidence for efficient infection of and potential transmission by Aedes species mosquitoes, despite ILHV's phylogenetically clustering with Culex vectored flaviviruses, suggesting ILHV is poised for emergence in the neotropics.

4.
Viruses ; 16(3)2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38543701

RESUMO

Cacipacoré virus (CPCV) was discovered in 1977 deep in the Amazon rainforest from the blood of a black-faced ant thrush (Formicarius analis). As a member of the family Flaviviridae and genus orthoflavivirus, CPCV's intricate ecological association with vectors and hosts raises profound questions. CPCV's transmission cycle may involve birds, rodents, equids, bovines, marsupials, non-human primates, and bats as potential vertebrate hosts, whereas Culex and Aedes spp. mosquitoes have been implicated as potential vectors of transmission. The virus' isolation across diverse biomes, including urban settings, suggests its adaptability, as well as presents challenges for its accurate diagnosis, and thus its impact on veterinary and human health. With no specific treatment or vaccine, its prevention hinges on traditional arbovirus control measures. Here, we provide an overview of its ecology, transmission cycles, epidemiology, pathogenesis, and prevention, aiming at improving our ability to better understand this neglected arbovirus.


Assuntos
Aedes , Arbovírus , Culex , Animais , Bovinos , Brasil/epidemiologia , Mosquitos Vetores , Primatas , Roedores
5.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38328060

RESUMO

Zika virus (ZIKV) causes human testicular inflammation and alterations in sperm parameters and causes testicular damage in mouse models. The involvement of individual immune cells in testicular damage is not fully understood. We detected virus in the testes of the interferon (IFN) α/ß receptor -/- A129 mice three weeks post-infection and found elevated chemokines in the testes, suggesting chronic inflammation and long-term infection play a role in testicular damage. In the testes, myeloid cells and CD4 + T cells were absent at 7 dpi but were present at 23 days post-infection (dpi), and CD8 + T cell infiltration started at 7 dpi. CD8 -/- mice with an antibody-depleted IFN response had a significant reduction in spermatogenesis, indicating that CD8 + T cells are essential to prevent testicular damage during long-term ZIKV infections. Our findings on the dynamics of testicular immune cells and importance of CD8 + T cells functions as a framework to understand mechanisms underlying observed inflammation and sperm alterations in humans.

6.
Sci Transl Med ; 15(718): eadj2166, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37851824

RESUMO

Emerging zoonotic mosquito-borne viruses pose increasing health threats because of growing mosquito population, geographic expansions, and control challenges. We emphasize the need for global preparedness to effectively mitigate the health, societal, and economic impacts of spillover by these viruses through proactive measures of prediction, surveillance, prevention, and treatment.


Assuntos
Infecções por Arbovirus , Arbovírus , Culicidae , Animais , Infecções por Arbovirus/prevenção & controle
7.
bioRxiv ; 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37425901

RESUMO

Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic cycles involving monkey hosts, spilled over into human transmission, and were translocated to the Americas, creating potential for spillback into neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We exposed native (cynomolgus macaque) or novel (squirrel monkey) hosts to mosquitoes infected with either sylvatic DENV or ZIKV and monitored viremia, natural killer cells, transmission to mosquitoes, cytokines, and neutralizing antibody titers. Unexpectedly, DENV transmission from both host species occurred only when serum viremia was undetectable or near the limit of detection. ZIKV replicated in squirrel monkeys to much higher titers than DENV and was transmitted more efficiently but stimulated lower neutralizing antibody titers. Increasing ZIKV viremia led to greater instantaneous transmission and shorter duration of infection, consistent with a replication-clearance trade-off.

8.
Front Reprod Health ; 5: 1229622, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457430

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19), which caused one of the pandemics with the highest mortalities with millions of deaths and hundreds of millions of cases to date. Due to its potential for airborne transmission, many studies have focused on SARS-CoV-2 primarily as a respiratory disease. However, the spread of SARS-CoV-2 to non-respiratory organs has been experimentally demonstrated and clinically observed. During autopsy studies, histopathological lesions, and disruption of the blood-testes barrier (BTB) have been observed in the male reproductive tract. Here, we review findings from both autopsy cases and animal models that demonstrate testicular disease due to COVID-19 and present an overview of the pathological alterations that occur in the testes resulting from SARS-CoV-2 infection and explore its potential mechanisms.

9.
Sci Transl Med ; 15(691): eabl9344, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-37043558

RESUMO

Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.


Assuntos
Vírus da Encefalite Equina Venezuelana , Encefalomielite Equina do Leste , Humanos , Cavalos , Animais , Camundongos , Estados Unidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Camundongos Endogâmicos C57BL , Encéfalo
10.
PLoS Pathog ; 18(6): e1010658, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759511

RESUMO

Nipah virus (NiV) disease is a bat-borne zoonosis responsible for outbreaks with high lethality and is a priority for vaccine development. With funding from the Coalition of Epidemic Preparedness Innovations (CEPI), we are developing a chimeric vaccine (PHV02) composed of recombinant vesicular stomatitis virus (VSV) expressing the envelope glycoproteins of both Ebola virus (EBOV) and NiV. The EBOV glycoprotein (GP) mediates fusion and viral entry and the NiV attachment glycoprotein (G) is a ligand for cell receptors, and stimulates neutralizing antibody, the putative mediator of protection against NiV. PHV02 is identical in construction to the registered Ebola vaccine (Ervebo) with the addition of the NiV G gene. NiV ephrin B2 and B3 receptors are expressed on neural cells and the wild-type NiV is neurotropic and causes encephalitis in affected patients. It was therefore important to assess whether the NiV G alters tropism of the rVSV vector and serves as a virulence factor. PHV02 was fully attenuated in adult hamsters inoculated by the intramuscular (IM) route, whereas parental wild-type VSV was 100% lethal. Two rodent models (mice, hamsters) were infected by the intracerebral (IC) route with graded doses of PHV02. Comparator active controls in various experiments included rVSV-EBOV (representative of Ebola vaccine) and yellow fever (YF) 17DD commercial vaccine. These studies showed PHV02 to be more neurovirulent than both rVSV-EBOV and YF 17DD in infant animals. PHV02 was lethal for adult hamsters inoculated IC but not for adult mice. In contrast YF 17DD retained virulence for adult mice inoculated IC but was not virulent for adult hamsters. Because of the inconsistency of neurovirulence patterns in the rodent models, a monkey neurovirulence test (MNVT) was performed, using YF 17DD as the active comparator because it has a well-established profile of quantifiable microscopic changes in brain centers and a known reporting rate of neurotropic adverse events in humans. In the MNVT PHV02 was significantly less neurovirulent than the YF 17DD vaccine reference control, indicating that the vaccine will have an acceptable safety profile for humans. The findings are important because they illustrate the complexities of phenotypic assessment of novel viral vectors with tissue tropisms determined by transgenic proteins, and because it is unprecedented to use a heterologous comparator virus (YF vaccine) in a regulatory-enabling study. This approach may have value in future studies of other novel viral vectors.


Assuntos
Infecções por Henipavirus , Estomatite Vesicular , Vacinas Virais , Animais , Modelos Animais de Doenças , Vacinas contra Ebola , Glicoproteínas/genética , Doença pelo Vírus Ebola/prevenção & controle , Infecções por Henipavirus/prevenção & controle , Humanos , Camundongos , Vírus Nipah/genética , Vacinas Atenuadas/efeitos adversos , Vacinas Sintéticas/efeitos adversos , Estomatite Vesicular/prevenção & controle , Vacinas Virais/efeitos adversos
11.
Viruses ; 14(4)2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35458395

RESUMO

Chronic conditions like type II diabetes (T2DM) have long been known to exacerbate many infectious diseases. For many arboviruses, including Zika virus (ZIKV), severe outcomes, morbidity and mortality usually only occur in patients with such pre-existing conditions. However, the effects of T2DM and other pre-existing conditions on human blood (e.g., hypo/hyperinsulinemia, hyperglycemia and hyperlipidemia) that may impact infectivity of arboviruses for vectors is largely unexplored. We investigated whether the susceptibility of Aedes aegypti mosquitoes was affected when the mosquitoes fed on "diabetic" bloodmeals, such as bloodmeals composed of artificially glycosylated erythrocytes or those from viremic, diabetic mice (LEPRDB/DB). Increasing glycosylation of erythrocytes from hemoglobin A1c (HgbA1c) values of 5.5-5.9 to 6.2 increased the infection rate of a Galveston, Texas strain of Ae. aegypti to ZIKV strain PRVABC59 at a bloodmeal titer of 4.14 log10 FFU/mL from 0.0 to 40.9 and 42.9%, respectively. ZIKV was present in the blood of viremic LEPRDB/DB mice at similar levels as isogenic control C57BL/6J mice (3.3 log10 FFU/mL and 3.6 log10 FFU/mL, respectively. When mice sustained a higher ZIKV viremia of 4.6 log10 FFU/mL, LEPRDB/DB mice infected 36.3% of mosquitoes while control C57BL/6J mice with a viremia of 4.2 log10 FFU/mL infected only 4.1%. Additionally, when highly susceptible Ae. aegypti Rockefeller mosquitoes fed on homozygous LEPRDB/DB, heterozygous LEPRWT/DB, and control C57BL/6J mice with viremias of ≈ 4 log10 FFU/mL, 54%, 15%, and 33% were infected, respectively. In total, these data suggest that the prevalence of T2DM in a population may have a significant impact on ZIKV transmission and indicates the need for further investigation of the impacts of pre-existing metabolic conditions on arbovirus transmission.


Assuntos
Aedes , Arbovírus , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Infecção por Zika virus , Zika virus , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mosquitos Vetores , Viremia
12.
Artigo em Inglês | MEDLINE | ID: mdl-35262074

RESUMO

Background: Venezuelan equine encephalitis virus (VEEV) is an arbovirus endemic to the Americas. There are no approved vaccines or antivirals. TC-83 and V3526 are the best-characterized vaccine candidates for VEEV. Both are live-attenuated vaccines and have been associated with safety concerns, albeit less so for V3526. A previous attempt to improve the TC-83 vaccine focused on further attenuating the vaccine by adding mutations that altered the error incorporation rate of the RNA-dependent RNA polymerase (RdRp). Methods: The research presented here examines the impact of these RdRp mutations in V3526 by cloning the 3X and 4X strains, assessing vaccine efficacy against challenge in adult female CD-1 mice, examining neutralizing antibody titers, investigating vaccine tissue tropism, and testing the stability of the mutant strains. Results: Our results show that the V3526 RdRp mutants exhibited reduced tissue tropism in the spleen and kidney compared to wild-type V3526, while maintaining vaccine efficacy. Illumina sequencing showed that the RdRp mutations could revert to wild-type V3526. Conclusions: The observed genotypic reversion is likely of limited concern because wild-type V3526 is still an effective vaccine capable of providing protection. Our results indicate that the V3526 RdRp mutants may be a safer vaccine design than the original V3526.

13.
J Biol Chem ; 297(5): 101315, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34678311

RESUMO

Coagulopathy is associated with both inflammation and infection, including infections with novel severe acute respiratory syndrome coronavirus-2, the causative agent Coagulopathy is associated with both inflammation and infection, including infection with novel severe acute respiratory syndrome coronavirus-2, the causative agent of COVID-19. Clot formation is promoted via cAMP-mediated secretion of von Willebrand factor (vWF), which fine-tunes the process of hemostasis. The exchange protein directly activated by cAMP (EPAC) is a ubiquitously expressed intracellular cAMP receptor that plays a regulatory role in suppressing inflammation. To assess whether EPAC could regulate vWF release during inflammation, we utilized our EPAC1-null mouse model and revealed increased secretion of vWF in endotoxemic mice in the absence of the EPAC1 gene. Pharmacological inhibition of EPAC1 in vitro mimicked the EPAC1-/- phenotype. In addition, EPAC1 regulated tumor necrosis factor-α-triggered vWF secretion from human umbilical vein endothelial cells in a manner dependent upon inflammatory effector molecules PI3K and endothelial nitric oxide synthase. Furthermore, EPAC1 activation reduced inflammation-triggered vWF release, both in vivo and in vitro. Our data delineate a novel regulatory role for EPAC1 in vWF secretion and shed light on the potential development of new strategies to control thrombosis during inflammation.


Assuntos
Células Endoteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de von Willebrand/metabolismo , Animais , COVID-19/metabolismo , Modelos Animais de Doenças , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Inflamação/metabolismo , Camundongos , Camundongos Knockout
14.
Nat Commun ; 12(1): 4636, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330906

RESUMO

Chikungunya virus (CHIKV) is a reemerging mosquito-borne virus that causes swift outbreaks. Major concerns are the persistent and disabling polyarthralgia in infected individuals. Here we present the results from a first-in-human trial of the candidate simian adenovirus vectored vaccine ChAdOx1 Chik, expressing the CHIKV full-length structural polyprotein (Capsid, E3, E2, 6k and E1). 24 adult healthy volunteers aged 18-50 years, were recruited in a dose escalation, open-label, nonrandomized and uncontrolled phase 1 trial (registry NCT03590392). Participants received a single intramuscular injection of ChAdOx1 Chik at one of the three preestablished dosages and were followed-up for 6 months. The primary objective was to assess safety and tolerability of ChAdOx1 Chik. The secondary objective was to assess the humoral and cellular immunogenicity. ChAdOx1 Chik was safe at all doses tested with no serious adverse reactions reported. The vast majority of solicited adverse events were mild or moderate, and self-limiting in nature. A single dose induced IgG and T-cell responses against the CHIKV structural antigens. Broadly neutralizing antibodies against the four CHIKV lineages were found in all participants and as early as 2 weeks after vaccination. In summary, ChAdOx1 Chik showed excellent safety, tolerability and 100% PRNT50 seroconversion after a single dose.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Febre de Chikungunya/imunologia , Vírus Chikungunya/imunologia , Vacinas Virais/imunologia , Adolescente , Adulto , Febre de Chikungunya/prevenção & controle , Febre de Chikungunya/virologia , Vírus Chikungunya/classificação , Vírus Chikungunya/fisiologia , Citocinas/imunologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Fadiga/induzido quimicamente , Feminino , Cefaleia/induzido quimicamente , Humanos , Imunoglobulina G/imunologia , Injeções Intramusculares , Masculino , Pessoa de Meia-Idade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Vacinação/métodos , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Adulto Jovem
15.
Microorganisms ; 9(6)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204370

RESUMO

The COVID-19 pandemic continues to affect millions of people worldwide. Although SARS-CoV-2 is a respiratory virus, there is growing concern that the disease could cause damage and pathology outside the lungs, including in the genital tract. Studies suggest that SARS-CoV-2 infection can damage the testes and reduce testosterone levels, but the underlying mechanisms are unknown and evidence of virus replication in testicular cells is lacking. We infected golden Syrian hamsters intranasally, a model for mild human COVID-19, and detected viral RNA in testes samples without histopathological changes up to one month post-infection. Using an ex vivo infection model, we detected SARS-CoV-2 replication in hamster testicular cells. Taken together, our data raise the possibility that testes damage observed in severe cases of COVID-19 could be partly explained by direct SARS-CoV-2 infection of the testicular cells.

17.
Virology ; 561: 117-124, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33823988

RESUMO

There is a pressing need for vaccines against mosquito-borne alphaviruses such as Venezualen and eastern equine encephalitis viruses (VEEV, EEEV). We demonstrate an approach to vaccine development based on physicochemical properties (PCP) of amino acids to design a PCP-consensus sequence of the epitope-rich B domain of the VEEV major antigenic E2 protein. The consensus "spike" domain was incorporated into a live-attenuated VEEV vaccine candidate (ZPC/IRESv1). Mice inoculated with either ZPC/IRESv1 or the same virus containing the consensus E2 protein fragment (VEEVconE2) were protected against lethal challenge with VEEV strains ZPC-738 and 3908, and Mucambo virus (MUCV, related to VEEV), and had comparable neutralizing antibody titers against each virus. Both vaccines induced partial protection against Madariaga virus (MADV), a close relative of EEEV, lowering mortality from 60% to 20%. Thus PCP-consensus sequences can be integrated into a replicating virus that could, with further optimization, provide a broad-spectrum vaccine against encephalitic alphaviruses.


Assuntos
Infecções por Alphavirus/prevenção & controle , Alphavirus/imunologia , Vírus da Encefalite Equina Venezuelana/imunologia , Encefalomielite Equina Venezuelana/prevenção & controle , Desenvolvimento de Vacinas , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia , Infecções por Alphavirus/imunologia , Aminoácidos/química , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Vírus da Encefalite Equina do Leste/imunologia , Encefalomielite Equina do Leste/imunologia , Encefalomielite Equina do Leste/prevenção & controle , Encefalomielite Equina Venezuelana/imunologia , Feminino , Imunogenicidade da Vacina , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética
18.
Virology ; 552: 94-106, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33120225

RESUMO

Drugs against flaviviruses such as dengue (DENV) and Zika (ZIKV) virus are urgently needed. We previously demonstrated that three fluoroquinolones, ciprofloxacin, enoxacin, and difloxacin, suppress replication of six flaviviruses. To investigate the barrier to resistance and mechanism(s) of action of these drugs, DENV-4 was passaged in triplicate in HEK-293 cells in the presence or absence of each drug. Resistance to ciprofloxacin was detected by the seventh passage and to difloxacin by the tenth, whereas resistance to enoxacin did not occur within ten passages. Two putative resistance-conferring mutations were detected in the envelope gene of ciprofloxacin and difloxacin-resistant DENV-4. In the absence of ciprofloxacin, ciprofloxacin-resistant viruses sustained a significantly higher viral titer than control viruses in HEK-293 and HuH-7 cells and resistant viruses were more stable than control viruses at 37 °C. These results suggest that the mechanism of action of ciprofloxacin and difloxacin involves interference with virus binding or entry.


Assuntos
Evolução Biológica , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Dengue/virologia , Fluoroquinolonas/farmacologia , Aptidão Genética/efeitos dos fármacos , Fenômenos Fisiológicos Virais/efeitos dos fármacos , Adaptação Biológica , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Ciprofloxacina/análogos & derivados , Ciprofloxacina/farmacologia , Farmacorresistência Viral , Enoxacino/farmacologia , Células HEK293 , Interações entre Hospedeiro e Microrganismos , Humanos , Mutação , Células Vero , Envelope Viral/fisiologia
19.
Front Immunol ; 11: 591885, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33224148

RESUMO

Mayaro (MAYV) and chikungunya viruses (CHIKV) are vector-borne arthritogenic alphaviruses that cause acute febrile illnesses. CHIKV is widespread and has recently caused large urban outbreaks, whereas the distribution of MAYV is restricted to tropical areas in South America with small and sporadic outbreaks. Because MAYV and CHIKV are closely related and have high amino acid similarity, we investigated whether vaccination against one could provide cross-protection against the other. We vaccinated A129 mice (IFNAR -/-) with vaccines based on chimpanzee adenoviral vectors encoding the structural proteins of either MAYV or CHIKV. ChAdOx1 May is a novel vaccine against MAYV, whereas ChAdOx1 Chik is a vaccine against CHIKV already undergoing early phase I clinical trials. We demonstrate that ChAdOx1 May was able to afford full protection against MAYV challenge in mice, with most samples yielding neutralizing PRNT80 antibody titers of 1:258. ChAdOx1 May also provided partial cross-protection against CHIKV, with protection being assessed using the following parameters: survival, weight loss, foot swelling and viremia. Reciprocally, ChAdOx1 Chik vaccination reduced MAYV viral load, as well as morbidity and lethality caused by this virus, but did not protect against foot swelling. The cross-protection observed is likely to be, at least in part, secondary to cross-neutralizing antibodies induced by both vaccines. In summary, our findings suggest that ChAdOx1 Chik and ChAdOx1 May vaccines are not only efficacious against CHIKV and MAYV, respectively, but also afford partial heterologous cross-protection.


Assuntos
Adenoviridae , Infecções por Alphavirus/prevenção & controle , Alphavirus/imunologia , Febre de Chikungunya/prevenção & controle , Vírus Chikungunya/imunologia , Vetores Genéticos , Vacinas Virais , Adenoviridae/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linhagem Celular , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Engenharia Genética/métodos , Vetores Genéticos/genética , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Pan troglodytes , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Vacinas Virais/imunologia
20.
Vaccines (Basel) ; 8(3)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887313

RESUMO

Venezuelan equine encephalitis virus (VEEV) is a re-emerging virus of human, agriculture, and bioweapon threat importance. No FDA-approved treatment is available to combat Venezuelan equine encephalitis in humans, prompting the need to create a vaccine that is safe, efficacious, and cannot be replicated in the mosquito vector. Here we describe the use of a serotype ID VEEV (ZPC-738) vaccine with an internal ribosome entry site (IRES) to alter gene expression patterns. This ZPC/IRES vaccine was genetically engineered in two ways based on the position of the IRES insertion to create a vaccine that is safe and efficacious. After a single dose, both versions of the ZPC/IRES vaccine elicited neutralizing antibody responses in mice and non-human primates after a single dose, with more robust responses produced by version 2. Further, all mice and primates were protected from viremia following VEEV challenge. These vaccines were also safer in neonatal mice than the current investigational new drug vaccine, TC-83. These results show that IRES-based attenuation of alphavirus genomes consistently produce promising vaccine candidates, with VEEV/IRES version 2 showing promise for further development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...