Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Trop Med Hyg ; 101(6): 1240-1248, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31701857

RESUMO

Poliovirus (PV) environmental surveillance was established in Haiti in three sites each in Port-au-Prince and Gonaïves, where sewage and fecal-influenced environmental open water channel samples were collected monthly from March 2016 to February 2017. The primary objective was to monitor for the emergence of vaccine-derived polioviruses (VDPVs) and the importation and transmission of wild polioviruses (WPVs). A secondary objective was to compare two environmental sample processing methods, the gold standard two-phase separation method and a filter method (bag-mediated filtration system [BMFS]). In addition, non-polio enteroviruses (NPEVs) were characterized by next-generation sequencing using Illumina MiSeq to provide insight on surrogates for PVs. No WPVs or VDPVs were detected at any site with either concentration method. Sabin (vaccine) strain PV type 2 and Sabin strain PV type 1 were found in Port-au-Prince, in March and April samples, respectively. Non-polio enteroviruses were isolated in 75-100% and 0-58% of samples, by either processing method during the reporting period in Port-au-Prince and Gonaïves, respectively. Further analysis of 24 paired Port-au-Prince samples confirmed the detection of a human NPEV and echovirus types E-3, E-6, E-7, E-11, E-19, E-20, and E-29. The comparison of the BMFS filtration method to the two-phase separation method found no significant difference in sensitivity between the two methods (mid-P-value = 0.55). The experience of one calendar year of sampling has informed the appropriateness of the initially chosen sampling sites, importance of an adequate PV surrogate, and robustness of two processing methods.


Assuntos
Monitoramento Ambiental , Fezes/virologia , Poliomielite/epidemiologia , Poliovirus/isolamento & purificação , Esgotos/virologia , Erradicação de Doenças , Filtração/métodos , Haiti/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Poliomielite/prevenção & controle , Poliovirus/genética , Vacina Antipólio Oral , Microbiologia da Água
2.
Sci Rep ; 9(1): 1164, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718586

RESUMO

Cholera has affected Haiti with damping waves of outbreaks since October 2010. However, mechanisms behind disease persistence during lull periods remain poorly understood. By mid 2014, cholera transmission seemed to only persist in the northern part of Haiti. Meanwhile, cholera appeared nearly extinct in the capital, Port-au-Prince, where it eventually exploded in September 2014. This study aimed to determine whether this outbreak was caused by local undetected cases or by re-importation of the disease from the north. Applying an integrated approach between November 2013 and November 2014, we assessed the temporal and spatial dynamics of cholera using routine surveillance data and performed population genetics analyses of 178 Vibrio cholerae O1 clinical isolates. The results suggest that the northern part of the country exhibited a persisting metapopulation pattern with roaming oligoclonal outbreaks that could not be effectively controlled. Conversely, undetected and unaddressed autochthonous low-grade transmission persisted in the Port-au-Prince area, which may have been the source of the acute outbreak in late-2014. Cholera genotyping is a simple but powerful tool to adapt control strategies based on epidemic specificities. In Haiti, these data have already yielded significant progress in cholera surveillance, which is a key component of the strategy to eventually eliminate cholera.


Assuntos
Cólera/epidemiologia , Surtos de Doenças , Transmissão de Doença Infecciosa , Genótipo , Recidiva , Vibrio cholerae O1/classificação , Vibrio cholerae O1/genética , Cólera/microbiologia , Cólera/transmissão , Haiti/epidemiologia , Humanos , Epidemiologia Molecular , Tipagem Molecular , Análise Espaço-Temporal , Vibrio cholerae O1/isolamento & purificação
3.
Am J Trop Med Hyg ; 97(4_Suppl): 84-91, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29064355

RESUMO

Consumption of drinking water from private vendors has increased considerably in Port-au-Prince, Haiti, in recent decades. A major type of vendor is private kiosks, advertising reverse osmosis-treated water for sale by volume. To describe the scale and geographical distribution of private kiosks in metropolitan Port-au-Prince, an inventory of private kiosks was conducted from July to August 2013. Coordinates of kiosks were recorded with global positioning system units and a brief questionnaire was administered with the operator to document key kiosk characteristics. To assess the quality of water originating from private kiosks, water quality analyses were also conducted on a sample of those inventoried as well as from the major provider company sites. The parameters tested were Escherichia coli, free chlorine residual, pH, turbidity, and total dissolved solids. More than 1,300 kiosks were inventoried, the majority of which were franchises of four large provider companies. Approximately half of kiosks reported opening within 12 months of the date of the inventory. The kiosk treatment chain and sales price was consistent among a majority of the kiosks. Of the 757 kiosks sampled for water quality, 90.9% of samples met World Health Organization (WHO) microbiological guideline at the point of sale for nondetectable E. coli in a 100-mL sample. Of the eight provider company sites tested, all samples met the WHO microbiological guideline. Because of the increasing role of the private sector in drinking water provision in Port-au-Prince and elsewhere in Haiti, this assessment was an important first step for government regulation of this sector.


Assuntos
Água Potável/normas , Qualidade da Água , Cloro/análise , Comércio , Desastres , Água Potável/química , Água Potável/microbiologia , Terremotos , Escherichia coli/isolamento & purificação , Haiti , Humanos , Concentração de Íons de Hidrogênio , Setor Privado
4.
J Microbiol Methods ; 133: 23-31, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28007529

RESUMO

Cholera is now considered to be endemic in Haiti, often with increased incidence during rainy seasons. The challenge of cholera surveillance is exacerbated by the cost of sample collection and laboratory analysis. A diagnostic tool is needed that is low cost, easy-to-use, and able to detect and quantify Vibrio cholerae accurately in water samples within 18-24h, and perform reliably in remote settings lacking laboratory infrastructure and skilled staff. The two main objectives of this study were to develop and evaluate a new culture medium embedded in a new diagnostic tool (PAD for paper based analytical device) for detecting Vibrio cholerae from water samples collected in Haiti. The intent is to provide guidance for corrective action, such as chlorination, for water positive for V. cholerae epidemic strains. For detecting Vibrio cholerae, a new chromogenic medium was designed and evaluated as an alternative to thiosulfate citrate bile salts sucrose (TCBS) agar for testing raw water samples. Sensitivity and specificity of the medium were assessed using both raw and spiked water samples. The Vibrio cholerae chromogenic medium was proved to be highly selective against most of the cultivable bacteria in the water samples, without loss of sensitivity in detection of V. cholerae. Thus, reliability of this new culture medium for detection of V. cholerae in the presence of other Vibrio species in water samples offers a significant advantage. A new paper based device containing the new chromogenic medium previously evaluated was compared with reference methods for detecting V. cholerae from spiked water sample. The microbiological PAD specifications were evaluated in Haiti. More precisely, a total of 185 water samples were collected at five sites in Haiti, June 2014 and again in June 2015. With this new tool, three V. cholerae O1 and 17 V. cholerae non-O1/O139 strains were isolated. The presence of virulence-associated and regulatory genes, including ctxA, zot, ace, and toxR, was confirmed using multiplex PCR. The three V. cholerae O1 isolates were positive for three of the four virulence-associated and regulatory genes. Twelve of the V. cholerae non-O1/O139 isolates were found to carry toxR, but none were ctxA+, zot+, or ace+. However, six of the V. cholerae non-O1/O139 isolates were resistant to penicillin, ampicillin, trimethoprim/sulfamethoxazole, nalidixic acid, and ciprofloxacin. The paper based analytical device (PAD) provides advantages in that standard culture methods employing agar plates are not required. Also, intermediary isolation steps were not required, including transfer to selective growth media, hence these steps being omitted reduced time to results. Furthermore, experienced technical skills also were not required. Thus, PAD is well suited for resource-limited settings.


Assuntos
Técnicas Bacteriológicas/instrumentação , Meios de Cultura/química , DNA Bacteriano/isolamento & purificação , Vibrio cholerae/isolamento & purificação , Microbiologia da Água , Cólera/epidemiologia , Contagem de Colônia Microbiana , Análise Custo-Benefício , Água Potável/microbiologia , Farmacorresistência Bacteriana Múltipla , Água Doce/microbiologia , Haiti/epidemiologia , Papel , Reprodutibilidade dos Testes , Água do Mar/microbiologia , Sensibilidade e Especificidade
5.
PLoS Curr ; 52013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24077904

RESUMO

BACKGROUND: On October 21, 2010, Haiti was struck by a cholera epidemic for the first time in over a century. Epidemiological and molecular genetic data have clearly demonstrated that the bacterium was imported. Nevertheless, the persistence of the epidemic for more than two years, the high incidence rates in some coastal areas and the seasonal exacerbations of the epidemic during the rainy seasons have prompted us to examine the levels of toxigenic Vibrio cholerae in the Haitian aquatic environment. METHODS: In July 2012, during the warm and rainy season, 36 aquatic stations were sampled to search for toxigenic V. cholerae. These stations included fresh, brackish and saline surface waters as well as waste water; the sampling sites were located in both rural and urban areas (around Port-au-Prince and Gonaïves) located in the West and Artibonite Departments. V. cholerae bacteria were detected in enrichment cultures of water samples (sample volumes included 1 L, 100 mL, 10 mL, 1 mL, 0.1 mL, 0.01 mL and 0.001 mL depending on the context). Detection methods included both culture on selective agar (for strain isolation) and PCR assays targeting the genes ompW (V. cholerae species), O1-rfb and O139-rfb (O1 and O139 V. cholerae serogroups, respectively), and the cholera toxin gene ctxA, which is present exclusively in toxigenic cholera strains. RESULTS: A total of 411 culturable V. cholerae isolates from 29 stations were obtained via selective culture; however, only one of these isolates displayed a late positive reaction with polyvalent anti-O1 serum. Positive V. cholerae PCR results were obtained from each of the 32 tested stations (a total of 77 enrichments out of 107 yielded a positive result); only one sample yielded a positive V. cholerae O1 PCR result. The cholera toxin gene ctxA was never detected via PCR with either primer pair, which includes samples derived from the two stations yielding positive O1 culture or positive O1 PCR results. Therefore, we could not demonstrate the presence of toxigenic V. cholerae O1 among the 36 stations sampled. This suggests that all water samples analyzed contained less than 10 toxigenic V. cholerae O1 bacteria per liter, a level 1000-fold below the dose that has been shown to provoke cholera in healthy adults. CONCLUSIONS: Currently, there is no evidence of a significant level of contamination of the aquatic environment in Haiti by the imported toxigenic V. cholerae O1 strain. The reemergence of cholera outbreaks in Haiti during rainy seasons is therefore more likely due to persisting outbreaks insufficiently tackled during the dry periods rather than the commonly suspected aquatic reservoir of toxigenic bacteria.

6.
PLoS Curr ; 52013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23873011

RESUMO

BACKGROUND: Since the beginning of the cholera epidemic in Haiti, attack rates have varied drastically with alternating peak and lull phases, which were partly associated with the fluctuating dry, rainy and cyclonic seasons. According to a study conducted in 2012, the toxigenic V. cholerae O1 strain responsible for the outbreak did not settle at a significant level in the Haitian aquatic environment. Therefore, we hypothesize that some areas of lingering cholera transmission during the dry season could play an important role in the re-emergence of outbreaks during the rainy season. Our objective was therefore to describe the dynamics of cholera and assess the fight against the disease during the dry season. METHODS: A field study was conducted from February 19 to March 29, 2013. After identifying the affected communes by analyzing the national cholera database, we visited corresponding health facilities to identify patient origins. We then conducted a field assessment of these foci to confirm the presence of cholera, assess factors associated with transmission and examine the activities implemented to control the epidemic since the beginning of the current dry season. RESULTS: We found that the great majority of Haitian communes (109/140) presented no sign of cholera transmission in February and March 2013. Suspected cases were concentrated in a small number of urban and rural areas, almost all of which were located in the northern half of the country and often in inland locales. In these areas, community health activities appeared insufficient and were often inappropriately targeted. Out of 49 analyzed foci, only 10 had benefited from at least one intervention involving the distribution of water treatment products together with an awareness campaign since December 2012. CONCLUSION: Cholera continues to affect Haiti as observed in early 2013; however, activities implemented to interrupt cholera transmission appear insufficient and poorly suited. This deficiency in the fight against cholera, especially at a period when transmission is weak, may explain the persistence of cholera even in the absence of significant aquatic reservoirs in Haiti.

7.
Diagn Microbiol Infect Dis ; 76(4): 521-3, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23886437

RESUMO

The present study details work done at the National Public Health Laboratory in Haiti (LNSP), comparing the results of a cholera rapid diagnostic test (RDT) with culture-based methods. As of October 21, 2011, 644 specimens were tested by both RDT and culture-based method at the LNSP. The sensitivity and specificity of RDT were 95% and 80%, respectively, with a positive predictive value of 89% and negative predictive value of 91%. In resource-limited settings, the RDT has good utility and should be considered as part of the laboratory testing algorithm.


Assuntos
Cólera/diagnóstico , Testes Diagnósticos de Rotina/estatística & dados numéricos , Kit de Reagentes para Diagnóstico/estatística & dados numéricos , Vibrio cholerae/isolamento & purificação , Cólera/microbiologia , Meios de Cultura , Fezes/microbiologia , Haiti , Humanos , Saúde Pública
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...