Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Ultramicroscopy ; 250: 113750, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37178606

RESUMO

X-ray photoelectron diffraction (XPD) is a powerful technique that yields detailed structural information of solids and thin films that complements electronic structure measurements. Among the strongholds of XPD we can identify dopant sites, track structural phase transitions, and perform holographic reconstruction. High-resolution imaging of kll-distributions (momentum microscopy) presents a new approach to core-level photoemission. It yields full-field kx-ky XPD patterns with unprecedented acquisition speed and richness in details. Here, we show that beyond the pure diffraction information, XPD patterns exhibit pronounced circular dichroism in the angular distribution (CDAD) with asymmetries up to 80%, alongside with rapid variations on a small kll-scale (0.1 Å-1). Measurements with circularly-polarized hard X-rays (hν = 6 keV) for a number of core levels, including Si, Ge, Mo and W, prove that core-level CDAD is a general phenomenon that is independent of atomic number. The fine structure in CDAD is more pronounced compared to the corresponding intensity patterns. Additionally, they obey the same symmetry rules as found for atomic and molecular species, and valence bands. The CD is antisymmetric with respect to the mirror planes of the crystal, whose signatures are sharp zero lines. Calculations using both the Bloch-wave approach and one-step photoemission reveal the origin of the fine structure that represents the signature of Kikuchi diffraction. To disentangle the roles of photoexcitation and diffraction, XPD has been implemented into the Munich SPRKKR package to unify the one-step model of photoemission and multiple scattering theory.

2.
Rev Sci Instrum ; 92(5): 053703, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243258

RESUMO

The performance of time-resolved photoemission experiments at fs-pulsed photon sources is ultimately limited by the e-e Coulomb interaction, downgrading energy and momentum resolution. Here, we present an approach to effectively suppress space-charge artifacts in momentum microscopes and photoemission microscopes. A retarding electrostatic field generated by a special objective lens repels slow electrons, retaining the k-image of the fast photoelectrons. The suppression of space-charge effects scales with the ratio of the photoelectron velocities of fast and slow electrons. Fields in the range from -20 to -1100 V/mm for Ekin = 100 eV to 4 keV direct secondaries and pump-induced slow electrons back to the sample surface. Ray tracing simulations reveal that this happens within the first 40 to 3 µm above the sample surface for Ekin = 100 eV to 4 keV. An optimized front-lens design allows switching between the conventional accelerating and the new retarding mode. Time-resolved experiments at Ekin = 107 eV using fs extreme ultraviolet probe pulses from the free-electron laser FLASH reveal that the width of the Fermi edge increases by just 30 meV at an incident pump fluence of 22 mJ/cm2 (retarding field -21 V/mm). For an accelerating field of +2 kV/mm and a pump fluence of only 5 mJ/cm2, it increases by 0.5 eV (pump wavelength 1030 nm). At the given conditions, the suppression mode permits increasing the slow-electron yield by three to four orders of magnitude. The feasibility of the method at high energies is demonstrated without a pump beam at Ekin = 3830 eV using hard x rays from the storage ring PETRA III. The approach opens up a previously inaccessible regime of pump fluences for photoemission experiments.

3.
Nat Commun ; 12(1): 3650, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131129

RESUMO

Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids.

4.
Nat Commun ; 12(1): 598, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33500397

RESUMO

Understanding of charge-density wave (CDW) phases is a main challenge in condensed matter due to their presence in high-Tc superconductors or transition metal dichalcogenides (TMDs). Among TMDs, the origin of the CDW in VSe2 remains highly debated. Here, by means of inelastic x-ray scattering and first-principles calculations, we show that the CDW transition is driven by the collapse at 110 K of an acoustic mode at qCDW = (2.25 0 0.7) r.l.u. The softening starts below 225 K and expands over a wide region of the Brillouin zone, identifying the electron-phonon interaction as the driving force of the CDW. This is supported by our calculations that determine a large momentum-dependence of the electron-phonon matrix-elements that peak at the CDW wave vector. Our first-principles anharmonic calculations reproduce the temperature dependence of the soft mode and the TCDW onset only when considering the out-of-plane van der Waals interactions, which reveal crucial for the melting of the CDW phase.

5.
Struct Dyn ; 7(3): 034304, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32596414

RESUMO

We study the non-equilibrium structural dynamics of the incommensurate and nearly commensurate charge-density wave (CDW) phases in 1T- TaS 2 . Employing ultrafast low-energy electron diffraction with 1 ps temporal resolution, we investigate the ultrafast quench and recovery of the CDW-coupled periodic lattice distortion (PLD). Sequential structural relaxation processes are observed by tracking the intensities of main lattice as well as satellite diffraction peaks and the diffuse scattering background. Comparing distinct groups of diffraction peaks, we disentangle the ultrafast quench of the PLD amplitude from phonon-related reductions of the diffraction intensity. Fluence-dependent relaxation cycles reveal a long-lived partial suppression of the order parameter for up to 60 ps, far outlasting the initial amplitude recovery and electron-phonon scattering times. This delayed return to a quasi-thermal level is controlled by lattice thermalization and coincides with the population of zone-center acoustic modes, as evidenced by a structured diffuse background. The long-lived non-equilibrium order parameter suppression suggests hot populations of CDW-coupled lattice modes. Finally, a broadening of the superlattice peaks is observed at high fluences, pointing to a non-linear generation of phase fluctuations.

6.
Rev Sci Instrum ; 91(1): 013109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012554

RESUMO

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å-1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å-1, and a system response function of 150 fs.

7.
Phys Rev Lett ; 125(26): 266402, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449703

RESUMO

Impulsive optical excitation generally results in a complex nonequilibrium electron and lattice dynamics that involves multiple processes on distinct timescales, and a common conception is that for times shorter than about 100 fs the gap in the electronic spectrum is not seriously affected by lattice vibrations. Here, however, by directly monitoring the photoinduced collapse of the spectral gap in a canonical charge-density-wave material, the blue bronze Rb_{0.3}MoO_{3}, we find that ultrafast (∼60 fs) vibrational disordering due to efficient hot-electron energy dissipation quenches the gap significantly faster than the typical structural bottleneck time corresponding to one half-cycle oscillation (∼315 fs) of the coherent charge-density-wave amplitude mode. This result not only demonstrates the importance of incoherent lattice motion in the photoinduced quenching of electronic order, but also resolves the perennial debate about the nature of the spectral gap in a coupled electron-lattice system.

8.
Phys Rev Lett ; 123(23): 236802, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31868459

RESUMO

We employ time- and angle-resolved photoemission spectroscopy to study the spin- and valley-selective photoexcitation and dynamics of free carriers at the K[over ¯] and K[over ¯]^{'} points in singly oriented single-layer WS_{2}/Au(111). Our results reveal that in the valence band maximum an ultimate valley polarization of free holes of 84% can be achieved upon excitation with circularly polarized light at room temperature. Notably, we observe a significantly smaller valley polarization for the photoexcited free electrons in the conduction band minimum. Clear differences in the carrier dynamics between electrons and holes imply intervalley scattering processes into dark states being responsible for the efficient depolarization of the excited electron population.

9.
10.
Phys Rev Lett ; 120(16): 166401, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29756943

RESUMO

Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1T-TaS_{2}, we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J≈14 fs. Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.

11.
Phys Rev Lett ; 121(25): 256401, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608821

RESUMO

Time- and angle-resolved photoelectron spectroscopy with 13 fs temporal resolution is used to follow the different stages in the formation of a Fermi-Dirac distributed electron gas in graphite after absorption of an intense 7 fs laser pulse. Within the first 50 fs after excitation, a sequence of time frames is resolved that are characterized by different energy and momentum exchange processes among the involved photonic, electronic, and phononic degrees of freedom. The results reveal experimentally the complexity of the transition from a nascent nonthermal towards a thermal electron distribution due to the different timescales associated with the involved interaction processes.

12.
Rev Sci Instrum ; 87(10): 103102, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27802702

RESUMO

An experimental setup for time- and angle-resolved photoelectron spectroscopy with sub-15 fs temporal resolution is presented. A hollow-fiber compressor is used for the generation of 6.5 fs white light pump pulses, and a high-harmonic-generation source delivers 11 fs probe pulses at a photon energy of 22.1 eV. A value of 13 fs full width at half-maximum of the pump-probe cross correlation signal is determined by analyzing a photoemission intensity transient probing a near-infrared interband transition in 1T-TiSe2. Notably, the energy resolution of the setup conforms to typical values reported in conventional time-resolved photoemission studies using high harmonics, and an ultimate resolution of 170 meV is feasible.

13.
Nat Commun ; 7: 12902, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27698341

RESUMO

Capturing the dynamic electronic band structure of a correlated material presents a powerful capability for uncovering the complex couplings between the electronic and structural degrees of freedom. When combined with ultrafast laser excitation, new phases of matter can result, since far-from-equilibrium excited states are instantaneously populated. Here, we elucidate a general relation between ultrafast non-equilibrium electron dynamics and the size of the characteristic energy gap in a correlated electron material. We show that carrier multiplication via impact ionization can be one of the most important processes in a gapped material, and that the speed of carrier multiplication critically depends on the size of the energy gap. In the case of the charge-density wave material 1T-TiSe2, our data indicate that carrier multiplication and gap dynamics mutually amplify each other, which explains-on a microscopic level-the extremely fast response of this material to ultrafast optical excitation.

14.
Phys Rev Lett ; 117(5): 056401, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27517781

RESUMO

Symmetry breaking and the emergence of order is one of the most fascinating phenomena in condensed matter physics. It leads to a plethora of intriguing ground states found in antiferromagnets, Mott insulators, superconductors, and density-wave systems. Exploiting states of matter far from equilibrium can provide even more striking routes to symmetry-lowered, ordered states. Here, we demonstrate for the case of elemental chromium that moderate ultrafast photoexcitation can transiently enhance the charge-density-wave (CDW) amplitude by up to 30% above its equilibrium value, while strong excitations lead to an oscillating, large-amplitude CDW state that persists above the equilibrium transition temperature. Both effects result from dynamic electron-phonon interactions, providing an efficient mechanism to selectively transform a broad excitation of the electronic order into a well-defined, long-lived coherent lattice vibration. This mechanism may be exploited to transiently enhance order parameters in other systems with coupled degrees of freedom.

15.
Faraday Discuss ; 171: 243-57, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415852

RESUMO

Time- and angle-resolved extreme ultraviolet photoemission spectroscopy is used to directly determine the momentum-dependent electronic structure dynamics in the layered Peierls-Mott insulators 1T-TaS(2) and 1T-TaSe(2) on the sub-300 fs time scale. Extracted spectroscopic order parameters display a global two-time-scale dynamics indicating a quasi-instantaneous loss of the electronic orders and a subsequent coherent suppression of the lattice distortion on a time scale related to the frequency of the charge-density-wave amplitude mode. After one half-cycle of coherent amplitude-mode vibration, a crossover state between insulator and metal with partially filled-in and partially closed Mott and Peierls gaps is reached. The results are discussed within the wider context of electronic order quenching in complex materials.

16.
Nat Mater ; 13(9): 857-61, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25038729

RESUMO

The simultaneous ordering of different degrees of freedom in complex materials undergoing spontaneous symmetry-breaking transitions often involves intricate couplings that have remained elusive in phenomena as wide ranging as stripe formation, unconventional superconductivity or colossal magnetoresistance. Ultrafast optical, X-ray and electron pulses can elucidate the microscopic interplay between these orders by probing the electronic and lattice dynamics separately, but a simultaneous direct observation of multiple orders on the femtosecond scale has been challenging. Here we show that ultrabroadband terahertz pulses can simultaneously trace the ultrafast evolution of coexisting lattice and electronic orders. For the example of a charge density wave (CDW) in 1T-TiSe2, we demonstrate that two components of the CDW order parameter--excitonic correlations and a periodic lattice distortion (PLD)--respond very differently to 12-fs optical excitation. Even when the excitonic order of the CDW is quenched, the PLD can persist in a coherently excited state. This observation proves that excitonic correlations are not the sole driving force of the CDW transition in 1T-TiSe2, and exemplifies the sort of profound insight that disentangling strongly coupled components of order parameters in the time domain may provide for the understanding of a broad class of phase transitions.

17.
Angew Chem Int Ed Engl ; 53(11): 3019-23, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24519743

RESUMO

The electronic structure of the iron(II) spin crossover complex [Fe(H2bpz)2(phen)] deposited as an ultrathin film on Au(111) is determined by means of UV-photoelectron spectroscopy (UPS) in the high-spin and in the low-spin state. This also allows monitoring the thermal as well as photoinduced spin transition in this system. Moreover, the complex is excited to the metastable high-spin state by irradiation with vacuum-UV light. Relaxation rates after photoexcitation are determined as a function of temperature. They exhibit a transition from thermally activated to tunneling behavior and are two orders of magnitude higher than in the bulk material.

18.
Nat Commun ; 3: 1069, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22990865

RESUMO

Distinguishing insulators by the dominant type of interaction is a central problem in condensed matter physics. Basic models include the Bloch-Wilson and the Peierls insulator due to electron-lattice interactions, the Mott and the excitonic insulator caused by electron-electron interactions, and the Anderson insulator arising from electron-impurity interactions. In real materials, however, all the interactions are simultaneously present so that classification is often not straightforward. Here, we show that time- and angle-resolved photoemission spectroscopy can directly measure the melting times of electronic order parameters and thus identify-via systematic temporal discrimination of elementary electronic and structural processes-the dominant interaction. Specifically, we resolve the debates about the nature of two peculiar charge-density-wave states in the family of transition-metal dichalcogenides, and show that Rb intercalated 1T-TaS(2) is a Peierls insulator and that the ultrafast response of 1T-TiSe(2) is highly suggestive of an excitonic insulator.

19.
J Phys Condens Matter ; 24(39): 394011, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22964419

RESUMO

In situ ultraviolet photoelectron spectroscopy is used to study the growth of ultrathin films of azobenzene-based functional molecules (azobenzene, Disperse Orange 3 and a triazatriangulenium platform with an attached functional azo-group) on the layered metal TiTe(2) and on the layered semiconductor HfS(2) at liquid nitrogen temperatures. Effects of intermolecular interactions, of the substrate electronic structure, and of the thermal energy of the sublimated molecules on the growth process and on the adsorbate electronic structure are identified and discussed. A weak adsorbate-substrate interaction is particularly observed for the layered semiconducting substrate, holding the promise of efficient molecular photoswitching.

20.
J Phys Condens Matter ; 23(21): 213001, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21558606

RESUMO

The occurrence of charge-density waves in three selected layered transition-metal dichalcogenides-1T-TaS(2), 2H-TaSe(2) and 1T-TiSe(2)-is discussed from an experimentalist's point of view with a particular focus on the implications of recent angle-resolved photoelectron spectroscopy results. The basic models behind charge-density-wave formation in low-dimensional solids are recapitulated, the experimental and theoretical results for the three selected compounds are reviewed, and their band structures and spectral weight distributions in the commensurate charge-density-wave phases are calculated using an empirical tight-binding model. It is explored whether the origin of charge-density waves in the layered transition-metal dichalcogenides can be understood in a unified way on the basis of a few measured and calculated parameters characterizing the interacting electron-lattice system. It is found that the predictions of the standard mean-field model agree only semi-quantitatively with the experimental data and that there is not one generally dominant factor driving charge-density-wave formation in this family of layer compounds. The need for further experimental and theoretical scrutiny is emphasized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...