Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 328: 103174, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728772

RESUMO

The most common carrier for encapsulation of bioactive components is still simple emulsion. Recently, bio-based novel emulsion systems such as multiple emulsions (MEs) and Pickering emulsions (PEs) have been introduced as innovative colloidal delivery systems for encapsulation and controlled release of bioactive compounds. Multiple PEs (MPEs), which carries both benefit of MEs and PEs could be fabricated by relatively scalable and simple operations. In comparison with costly synthetic surfactants and inorganic particles which are widely used for stabilization of both MEs and PEs, MPEs stabilized by food-grade particles, while having health-promoting aspects, are able to host the "clean label" and "green label" attributes. Nevertheless, in achieving qualified techno-functional attributes and encapsulation properties, the selection of suitable materials is a crucial step in the construction of such complex systems. Current review takes a cue from both MEs and PEs emulsification techniques to grant a robust background for designing various MPEs. Herein, various fabrication methods of MEs and PEs are described comprehensively in a physical viewpoint in order to find key conception of successful formulation of MPEs. This review also highlights the link between the underlying aspects and exemplified specimens of evidence which grant insights into the rational design of MPEs through food-based ingredients to introduces MPEs as novel colloidal/functional materials. Their utilization for encapsulation of bioactive compounds is discussed as well. In the last part, instability behavior of MPEs under various conditions will be discussed. In sum, this review aims to gain researchers who work with food-based components, basics of innovative design of MPEs.


Assuntos
Emulsões , Emulsões/química , Sistemas de Liberação de Medicamentos , Humanos , Tamanho da Partícula , Tensoativos/química
2.
Food Chem ; 451: 139290, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38653105

RESUMO

Iron is an important micronutrient that cannot be added directly into food products due to potential reactions with the food matrix, impact on color, and taste. Complexed biopolymeric nanocarriers can overcome these challenges particularly for oral delivery of iron, but selecting appropriate biopolymers, their ratio and pH of complexation is very important. In this study, whey protein concentrate (WPC)-pectin nanocomplexes were prepared at different concentrations (WPC 4, 6 and 8%; pectin 0.5, 0.75 and 1%), and pH (3, 6 and 9) to encapsulate iron. The smallest carriers were observed at pH 3; higher pH led to higher zeta potential (zero to -32.5 mV). Encapsulation efficiency of iron in nanocarriers formulated at pH = 3, 6 and 9 were 87.83, 75.92 and 20%, respectively. Scanning electron microscopy revealed the spherical particles at pH 3. To conclude, a WPC to pectin ratio of 4: 1 at pH 3 was the best conditions for loading iron.


Assuntos
Ferro , Tamanho da Partícula , Pectinas , Proteínas do Soro do Leite , Pectinas/química , Proteínas do Soro do Leite/química , Ferro/química , Concentração de Íons de Hidrogênio , Portadores de Fármacos/química , Composição de Medicamentos , Nanopartículas/química
3.
Food Chem X ; 20: 100922, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38144745

RESUMO

Electrospun fibers (EFs) have emerged as promising one-dimensional materials for a myriad of research/commercial applications due to their outstanding structural and physicochemical features. Polymers of either synthetic or natural precursors are applied to design EFs as carriers for bioactive compounds. For engineering food systems, it is crucial to exploit polymers characterized by non-toxicity, non-immunogenicity, biocompatibility, slow/controllable biodegradability, and structural integrity. The unique attributes of protein-based biomaterials endow a wide diversity of desirable features to EFs for meeting the requirements of advanced food/biomedical applications. In this review paper, after an overview on electrospinning, different protein materials (plant- and animal-based) as biodegradable/biocompatible building blocks for designing EFs will be highlighted. The potential application of protein-based EFs in loading bioactive compounds with the intention to inspire interests in both academia and industry will be summarized. This review concludes with a discussion of prevailing challenges in using protein EFs for the bioactive vehicle development.

4.
Biomed Pharmacother ; 168: 115695, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839113

RESUMO

The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.


Assuntos
Nanopartículas de Magnetita , Nanopartículas Metálicas , Nanopartículas , Nanopartículas de Magnetita/química , Polímeros , Sistemas de Liberação de Medicamentos , Engenharia Tecidual , Carboidratos
5.
Food Chem X ; 19: 100771, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37780299

RESUMO

Challenges for the food/non-food applications of starch mostly arise from its low stability against severe processing conditions (i.e. elevated temperatures, pH variations, intense shear forces), inordinate retrogradability, as well as restricted applicability. These drawbacks have been addressed through the modification of starch. The escalating awareness of individuals toward the presumptive side effects of chemical modification approaches has engrossed the attention of scientists to the development of physical modification procedures. In this regard, starch treatment via ionizing (i.e. gamma, electron beam, and X-rays) and non-ionizing (microwave, radiofrequency, infrared, ultraviolet) radiations has been introduced as a potent physical strategy offering new outstanding attributes to the modified product. Ionizing radiations, through dose-dependent pathways, are able to provoke depolymerization or cross-linking/grafting reactions to the starch medium. While non-ionizing radiations could modify the starch attributes by changing the morphology/architecture of granules and inducing reorientation/rearrangement in the molecular order of starch amorphous/crystalline fractions.

6.
Carbohydr Polym ; 321: 121276, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739495

RESUMO

Dialdehyde carbohydrates (DCs) have found applications in a wide range of biomedical field due to their great versatility, biocompatibility/biodegradability, biological properties, and controllable chemical/physical characteristics. The presence of dialdehyde groups in carbohydrate structure allows cross-linking of DCs to form versatile architectures serving as interesting matrices for biomedical applications (e.g., drug delivery, tissue engineering, and regenerative medicine). Recently, DCs have noticeably contributed to the development of diverse physical forms of advanced functional biomaterials i.e., bulk architectures (hydrogels, films/coatings, or scaffolds) and nano/-micro formulations. We underline here the current scientific knowledge on DCs, and demonstrate their potential and newly developed biomedical applications. Specifically, an update on the synthesis approach and functional/bioactive attributes is provided, and the selected in vitro/in vivo studies are reviewed comprehensively as examples of the latest progress in the field. Moreover, safety concerns, challenges, and perspectives towards the application of DCs are deliberated.


Assuntos
Materiais Biocompatíveis , Sistemas de Liberação de Medicamentos , Excipientes , Hexoses , Hidrogéis
7.
Carbohydr Polym ; 314: 120905, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173042

RESUMO

Apart from its non-toxicity, biocompatibility and biodegradability, starch has demonstrated eminent functional characteristics, e.g., forming well-defined gels/films, stabilizing emulsions/foams, and thickening/texturizing foods, which make it a promising hydrocolloid for various food purposes. Nonetheless, because of the ever-increasing range of its applications, modification of starch via chemical and physical methods for expanding its capabilities is unavoidable. The probable detrimental impacts of chemical modification on human health have encouraged scientists to develop potent physical approaches for starch modification. In this category, in recent years, starch combination with other molecules (i.e., gums, mucilages, salts, polyphenols) has been an interesting platform for developing modified starches with unique attributes where the characteristics of the fabricated starch could be finely tuned via adjusting the reaction parameters, type of molecules reacting with starch and the concentration of the reactants. The modification of starch characteristics upon its complexation with gums, mucilages, salts, and polyphenols as common ingredients in food formulations is comprehensively overviewed in this study. Besides their potent impact on physicochemical, and techno-functional attributes, starch modification via complexation could also remarkably customize the digestibility of starch and provide new products with less digestibility.


Assuntos
Sais , Amido , Humanos , Amido/química , Polifenóis , Alimentos , Emulsões
8.
Food Chem ; 412: 135479, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-36709686

RESUMO

Bixin is the cis-carotenoid from the seed of achiote tree or annatto. It is an approved liposoluble apocarotenoid by FDA as colorant and additive in the food industry. Nonetheless, bixin is unstable in the presence of oxygen, light, high pHs (alkali) and heat; thereby reducing its bioavailability/bioactivity, and also, with a low solubility in water. Some biopolymeric (e.g., nanofibers, nanogels, and nanotubes) and lipid-based nanocarriers (nanoliposomes, niosomes, hexosomes, nanoemulsions, solid-lipid nanoparticles, and nanostructured lipid carriers) have been introduced for bixin. Thus, this review focuses on the updated information regarding bixin-loaded nanodelivery platforms. Moreover, it provides a comprehensive review of bioavailability, physicochemical properties, and applications of nanoencapsulated-bixin as an additive, its release rate and safety issues. These findings will bring potential strategies for the usage of nanocarriers in managing bixin defaults to improve its broad application in various industries.


Assuntos
Sistemas de Liberação de Fármacos por Nanopartículas , Nanoestruturas , Carotenoides/química , Lipídeos
9.
Adv Colloid Interface Sci ; 311: 102827, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36584601

RESUMO

Electrospinning (ES) is one of the most investigated processes for the convenient, adaptive, and scalable manufacturing of nano/micro/macro-fibers. With this technique, virgin and composite fibers may be made in different designs using a wide range of polymers (both natural and synthetic). Electrospun protein fibers (EPF) shave desirable capabilities such as biocompatibility, low toxicity, degradability, and solvolysis. However, issues with the proteins' processibility have limited their widespread utilization. This paper gives an overview of the features of protein-based biomaterials, which are already being employed and has the potential to be exploited for ES. State-of-the-art examples showcasing the usefulness of EPFs in the food and biomedical industries, including tissue engineering, wound dressings, and drug delivery, provided in the applications. The EPFs' future perspective and the challenge they pose are presented at the end. It is believed that protein and biopolymeric nanofibers will soon be manufactured on an industrial scale owing to the limitations of employing synthetic materials, as well as enormous potential of nanofibers in other fields, such as active food packaging, regenerative medicine, drug delivery, cosmetic, and filtration.


Assuntos
Nanofibras , Materiais Biocompatíveis , Engenharia Tecidual/métodos , Medicina Regenerativa/métodos , Proteínas
10.
Crit Rev Food Sci Nutr ; 63(29): 9937-9960, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35587167

RESUMO

Now-a-days, the food/pharma realm faces with great challenges for the application of bioactive molecules when applying them in free form due to their instability in vitro/in vivo. For promoting the biological and functional properties of bioactive molecules, efficient delivery systems have played a pivotal role offering a controlled delivery and improved bioavailability/solubility of bioactives. Among different carbohydrate-based delivery systems, seed gum-based vehicles (SGVs) have shown great promise, facilitating the delivery of a high concentration of bioactive at the site of action, a controlled payload release, and less bioactive loss. SGVs are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components. Here, we offer a comprehensive overview of seed gum-based nano- and microdevices as delivery systems for bioactive molecules. We have a focus on structural/functional attributes and health-promoting benefits of seed gums, but also strategies involving modification of these biopolymers are included. Diverse SGVs (nano/microparticles, functional films, hydrogels/nanogels, particles for Pickering nanoemulsions, multilayer carriers, emulsions, and complexes/conjugates) are reviewed and important parameters for bioactive delivery are highlighted (e.g. bioactive-loading capacity, control of bioactive release, (bio)stability, and so on). Future challenges for these biopolymer-based carriers have also been discussed. HighlightsSeed gum-based polymers are promising materials to design different bioactive delivery systems.Seed gum-based delivery systems are particles, fibers, complexes, conjugates, hydrogels, etc.Seed gum-based vehicles are potent structures to promote the bioavailability, beneficial properties, and in vitro/in vivo stability of bioactive components.


Assuntos
Sistemas de Liberação de Medicamentos , Alimentos , Emulsões , Biopolímeros , Hidrogéis
11.
Crit Rev Food Sci Nutr ; 63(27): 8939-8959, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35426751

RESUMO

The current relevance of a healthy diet in well-being has led to a surging interest in designing novel functional food products enriched by biologically active molecules. As nature-inspired bioactive components, several lines of research have revealed the capability of polyphenolic compounds (phenolics) in the medical intervention of different ailments, i.e., tumors, cardiovascular and inflammatory diseases. Phenolics typically possess antioxidant and antibacterial properties and, due to their unique molecular structure, can offer superior platforms for designing functional products. They can protect food ingredients from oxidation and promote the physicochemical attributes of proteins and carbohydrate-based materials. Even though these properties contribute to the inherent benefits of bioactive phenolics as important functional ingredients in the food industry, the in vitro/in vivo instability, poor solubility, and low bioavailability are the main factors restricting their food/pharma applicability. Recent advances in the encapsulation realm are now offering efficient platforms to overcome these limitations. The application of encapsulation field may offer protection and controlled delivery of phenolics in food formulations. Here, we review recent advances in micro/nanoencapsulation of phenolics and highlight efficient carriers from this decade, which have been utilized successfully in food applications. Although further development of phenolic-containing formulations promises to design novel functional food formulations, and revolutionize the food industry, most of the strategies found in the scientific literature are not commercially applicable. Moreover, in vivo experiments are extremely crucial to corroborate the efficiency of such products.


Assuntos
Ingredientes de Alimentos , Sistemas de Liberação de Fármacos por Nanopartículas , Antioxidantes , Antibacterianos , Alimento Funcional
12.
Crit Rev Food Sci Nutr ; : 1-23, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36419371

RESUMO

An "intelligent" or smart packaging is able to continuously monitor physicochemical and/or biological variations of packaged food materials, providing real-time information concerning their quality, maturity, and safety. Electrospun nanofiber (ENF) structures, nowadays, reckon as versatile biomaterial platforms in designing intelligent packaging (IP) systems. Natural biopolymer-based ENF traits, for example, surface chemistry, rate of degradation, fiber diameter, and degree of alignment, facilitate the development of unique, tunable IP, enhancing food quality, and safety. In this review, after a brief overview of the electrospinning process, we review food IP systems, which can be utilized to detect variations in food features, for example, those based on alterations in temperature, O2 level, time, humidity, pH, or microbial contamination. Different intelligent approaches that are applicable in engineering IP materials are then highlighted, that is, indicators, data carriers, and sensors. The latest research on the application of ENFs made with natural biopolymers in food IP and their performance on different packaged food types (i.e. meat, fruits and vegetables, dairy products, etc.) are underlined. Finally, the challenges and outlook of these systems in the food industry are discussed.

13.
Carbohydr Polym ; 298: 120074, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36241269

RESUMO

Controlled oral delivery of bioactive molecules remains a promising platform for the food and biomedical realm. Nonetheless, there are many bottlenecks to the efficient oral bioactive delivery that necessitates the development of advanced approaches. In recent years, prebiotic carbohydrates have drawn surging interest for targeted bioactive delivery due to their potential of multi-stimuli release mechanisms. Harnessing prebiotic-based vehicles confers novel possibilities for intact oral bioactive delivery, improving their bioavailability and efficacy. This critical review updates state of the art on progresses in oral delivery of natural active agents via prebiotic carbohydrates. We offer the latest advances concerning prebiotic-based vehicles (i.e., pH/time-dependent systems, enzyme-sensitive polymers, and colonic microbiota-dependent vehicles), emphasizing their key attributes to attaining controlled/targeted bioactive delivery to the intended locus. Finally, we discuss safety considerations, challenges, and future perspectives toward advances in the field.


Assuntos
Microbiota , Prebióticos , Carboidratos , Excipientes , Polímeros
14.
Carbohydr Polym ; 296: 119931, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087982

RESUMO

Oat is a promising grain well-incorporated into human diet due to the presence of multiple nutrients in composition and its unique health-enhancing attributes. Similar to other cereals, starch is the most important component of the oat kernel, which makes up at least 60 % of the grain's dry weight. Considering the need to access new sources of starch with a broad range of capabilities, oat starch has experienced various modifications by physical and chemical strategies. Thus, this study aims to comprehensively review the impacts of various physical and chemical modifications on the physicochemical, functional, as well as digestibility properties of oat starch. Besides, the effects of oat starch combination with other biomacromolecules (whey protein isolate, caseinate, gums and lipids) on mentioned criteria were also reviewed. In conclusion, various modification methods could properly enhance the physicochemical attributes and digestibility of oat starch for its further successful application in food and pharmaceutical formulations.


Assuntos
Avena , Amido , Avena/química , Dieta , Humanos , Amido/química
15.
Carbohydr Polym ; 296: 119966, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36088006

RESUMO

The incorporation of carbohydrate polymers is one of the most efficient strategies to reinforce protein matrices for electrospinning application. In the present work, a basil seed gum (BSG)-reinforced whey protein isolate (WPI) was developed via electrospinning for the co-encapsulation of zinc oxide nanoparticles (ZnONPs) and curcumin (CU). The physicochemical attributes of the nanofiber samples could be controlled by varying the BSG mixing ratio. The Field emission scanning electron microscopy images showed bead-free morphology of WPI/BSG/ZnONPs/CU nanofibers with average fiber diameter of around 362 ± 41 nm. The formation of new H2 bonds after introduction of BSG and active components was corroborated by Fourier-transform infrared spectroscopy. The nanofibers loaded with ZnONPs/CU displayed improved surface hydrophobicity and high potential for hampering colon cancer cells in vitro. The results proved that the proposed electrospun structures were thermally stable and composed by homogenous nanofibers of high bactericide properties, thus representing promising structures suitable for various biomedical applications.


Assuntos
Curcumina , Ocimum basilicum , Óxido de Zinco , Cobre , Curcumina/farmacologia , Ocimum basilicum/química , Sementes/química , Óxido de Zinco/química
16.
Adv Colloid Interface Sci ; 307: 102750, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35987014

RESUMO

Beta-carotene (BC) as an efficient pro-vitamin is effective in improving vision, immune system and cognitive function as well as preventing coronary diseases and cancer. However, besides its poor chemical stability, the high lipophilic nature of BC reduces its dispersibility and consequently bioavailability which limits its application into food, pharmaceutical and nutraceuticals. Different carriers with vesicular or particulate structures have been studied and utilized for promoting BC solubility, dispersibility, and protection against diverse operational or environmental stresses and also controlling BC release and subsequent bioaccessibility. The current study, therefore reviews different micro/nanocarriers reported on BC encapsulation with special focusing on its bioavailability. Liposomal structures have been successfully used for enhancing BC stability and bioavailability. Besides, emulsion-based carriers including Pickering emulsions, nanoemulsions and microemulsions have been widely evaluated for BC encapsulation and protection. In addition, lipid-based nanoparticles and nanostructural carriers have also been applied successfully for this context. Moreover, gel structures including emulgels, hydrogels and oleogels are studied in some researches. Most of these delivery systems led to higher hydro-solubility and dispersibility of BC which consequently increased its bioavailability; thereupon could promote its application into food, cosmetic and nutraceutical products. However, for remarkable incorporation of BC and other bioactive compounds into edible products, the safety and toxicological aspects of these delivery system especially those designed in nano scale should be addressed in the further researches.


Assuntos
Nanoestruturas , beta Caroteno , Disponibilidade Biológica , Cápsulas , Emulsões , Nanocápsulas , Solubilidade
17.
Carbohydr Polym ; 294: 119761, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868785

RESUMO

In this study, an electrospray synthesis approach was utilized in which a solution mixture of a sensitive bioactive agent, d-limonene (DL, R-(+)-Limonene), and a nature-inspired polymer, κ-carrageenan (κC) was applied to design DL-κC nanoparticles (NPs) in a one step process. The engineered DL-κC NPs displayed spherical morphology and the maximum encapsulation efficiency of NPs was about 97 % by altering the mass ratio of DL to κC. The developed DL-κC NPs showed a pH-dependent release manner in vitro. Both photostability and thermostability of DL were promoted by increasing the κC concentration, and >85 % of the original DL could be preserved following 120 min of UV-light exposure in the NPs with 0.5 % κC. The results demonstrated that electrosprayed κC NPs are promising candidates for the design of high-loading pH-sensitive NPs for encapsulation of highly sensitive bioactive agents.


Assuntos
Nanopartículas , Carragenina , Polímeros
18.
Food Chem ; 393: 133376, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35661608

RESUMO

This research aimed to develop a healthy cookie formulation containing different types of resistant starch, through the application of TOPSIS approach, as a potent feature of MCDM methodologies. Physicochemical investigations reveled that a harder, denser and less sticky dough was produced by the addition of both types of RS. The baking of these doughs resulted in the production of crumblier cookies of less spread ratio, lower porous crumb and whiter surface/crumb. Moreover, in-vitro digestibility of the cookies demonstrated that the baking process can adversely reduce the resistance of RS4 to the enzymolysis reactions. This phenomenon was further corroborated by in-vivo studies where the RS4 enriched cookies were less capable in reducing the postprandial blood glucose. TOPSIS, through successful solving of the multiple criteria decision 9 (alternatives) × 15 (evaluated attributes) matrix suggested that the cookie containing 15% RS is the best alternative in all aspects, possessing acceptable physicochemical/organoleptic attributes, and in-vivo/in-vitro dietary fiber.


Assuntos
Amido Resistente , Amido , Fibras na Dieta , Período Pós-Prandial , Sensação
19.
Food Chem ; 386: 132765, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35509161

RESUMO

Essential oils of industrial hemp (Cannabis sativa L.) by-products (HBEO) were characterized by gas chromatography-mass spectrometry (GC-MS); then, encapsulated in alfalfa protein isolate nanoparticles (API-NPs) as a novel nanocarrier. A desirable retention (45.5-63.4%) of HBEO within API-NPs was confirmed. These nanoparticles exhibited a shrunk and globular shape with a size range of 156.9-325.9 nm as indicated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Furthermore, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and thermal analyses corroborated that HBEO was successfully encapsulated within API NPs in an amorphous form without specific chemical interaction with the carrier matrix. The antioxidant activity of loaded HBEO into API-NPs was higher than free HBEO implying that encapsulation of HBEO in API-NPs was an efficient strategy for improving its stability and functionality. HBEO-loaded API-NPs is a promising candidate to be used in future foods and supplements for novel applications.


Assuntos
Cannabis , Nanopartículas Metálicas , Nanopartículas , Óleos Voláteis , Antioxidantes , Cannabis/química , Medicago sativa , Nanopartículas Metálicas/química , Nanopartículas/química , Óleos Voláteis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
20.
Pharmacol Res ; 178: 106164, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35272044

RESUMO

As unique biopolymeric architectures, covalently and electrostatically protein-polysaccharide (PRO-POL) systems can be utilized for bioactive delivery by virtue of their featured structures and unique physicochemical attributes. PRO-POL systems (i. e, microscopic /nano-dimensional multipolymer particles, molecularly conjugated vehicles, hydrogels/nanogels/oleogels/emulgels, biofunctional films, multilayer emulsion-based delivery systems, particles for Pickering emulsions, and multilayer coated liposomal nanocarriers) possess a number of outstanding attributes, like biocompatibility, biodegradability, and bioavailability with low toxicity that qualify them as powerful agents for the delivery of different bioactive ingredients. To take benefits from these systems, an in-depth understanding of the chemical conjugates and physical complexes of the PRO-POL systems is crucial. In this review, we offer a comprehensive study concerning the unique properties of covalently/electrostatically PRO-POL systems and introduce emerging platforms to fabricate relevant nanocarriers for encapsulation of bioactive components along with a subsequent sustained/controlled release.


Assuntos
Lipossomos , Polissacarídeos , Disponibilidade Biológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...