Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(4): 109619, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38632990

RESUMO

Recently, the interest for the family of low dimensional materials has increased significantly due to the anisotropic nature of their fundamental properties. Among them, antimony sulfide (Sb2S3) is considered a suitable material for various solid-state devices. Although the main advantages and physicochemical properties of Sb2S3 are known, some doubtful information remains in literature and methodologies to easily assess its critical properties are missing. In this study, an advanced characterization of several types of Sb2S3 samples, involving the Rietveld refinement of structural properties, and Raman spectroscopy analysis, completed with lattice dynamics investigations reveal important insights into the structural and vibrational characteristics of the material. Based on the gathered data, fast, non-destructive, and non-invasive methodologies for assessment of the crystallographic orientation and point defect concentration of Sb2S3 are proposed. With a high resolution in-sample and in-situ assessment, these methodologies will serve for accelerating the research and application of Sb2S3 in the research field.

2.
Phys Chem Chem Phys ; 25(45): 31188-31193, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955192

RESUMO

Antimony sulfide (Sb2S3) and antimony selenide (Sb2Se3) compounds have attracted considerable attention for applications in different optoelectronic devices due to their notable optical and electrical properties, and due to the strong anisotropy of these properties along different crystallographic directions. However, the efficient use of these promising compounds still requires significant efforts in characterization of their fundamental properties. In the present study, Raman scattering and spectroscopic ellipsometry were used to investigate the vibrational and optical properties of Sb2Se3 and Sb2S3 bulk polycrystals grown by the modified Bridgman method. The first technique proved the presence of the desired Sb2S3 and Sb2Se3 phases in the analyzed ingots and confirmed the absence of any preferential crystallographic orientation at the measured surface of the samples. Spectroscopic ellipsometry was performed using a multi-oscillator Tauc-Lorentz dispersion model, and yielded a complex dielectric function of chalcogenides over the range 1.0-4.6 eV with a three phase model (ambient, surface and bulk materials). Finally, spectral data on the refractive index, the extinction coefficient, the absorption coefficient and the reflectivity at normal incidence, R, were obtained, which serve as a reference for the optical modeling of optoelectronic devices based on polycrystalline Sb2S3 and Sb2Se3 compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...