Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795512

RESUMO

Bacteria have evolved a diverse array of signaling pathways that enable them to quickly respond to environmental changes. Understanding how these pathways reflect environmental conditions and produce an orchestrated response is an ongoing challenge. Herein, we present a role for collective modifications of environmental pH carried out by microbial colonies living on a surface. We show that by collectively adjusting the local pH value, Paenibacillus spp., specifically, regulate their swarming motility. Moreover, we show that such pH-dependent regulation can converge with the carbon repression pathway to down-regulate flagellin expression and inhibit swarming in the presence of glucose. Interestingly, our results demonstrate that the observed glucose-dependent swarming repression is not mediated by the glucose molecule per se, as commonly thought to occur in carbon repression pathways, but rather is governed by a decrease in pH due to glucose metabolism. In fact, modification of the environmental pH by neighboring bacterial species could override this glucose-dependent repression and induce swarming of Paenibacillus spp. away from a glucose-rich area. Our results suggest that bacteria can use local pH modulations to reflect nutrient availability and link individual bacterial physiology to macroscale collective behavior.


Assuntos
Fenômenos Fisiológicos Bacterianos , Interações Microbianas , Paenibacillus/fisiologia , Flagelina/metabolismo , Concentração de Íons de Hidrogênio , Proteus mirabilis/fisiologia , Xanthomonas/fisiologia
2.
Nat Commun ; 10(1): 2886, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253809

RESUMO

Glucosinolates accumulate mainly in cruciferous plants and their hydrolysis-derived products play important roles in plant resistance against pathogens. The pathogen Botrytis cinerea has variable sensitivity to glucosinolates, but the mechanisms by which it responds to them are mostly unknown. Exposure of B. cinerea to glucosinolate-breakdown products induces expression of the Major Facilitator Superfamily transporter, mfsG, which functions in fungitoxic compound efflux. Inoculation of B. cinerea on wild-type Arabidopsis thaliana plants induces mfsG expression to higher levels than on glucosinolate-deficient A. thaliana mutants. A B. cinerea strain lacking functional mfsG transporter is deficient in efflux ability. It accumulates more isothiocyanates (ITCs) and is therefore more sensitive to this compound in vitro; it is also less virulent to glucosinolates-containing plants. Moreover, mfsG mediates ITC efflux in Saccharomyces cerevisiae cells, thereby conferring tolerance to ITCs in the yeast. These findings suggest that mfsG transporter is a virulence factor that increases tolerance to glucosinolates.


Assuntos
Arabidopsis/microbiologia , Botrytis/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Glucosinolatos/química , DNA Complementar , DNA Fúngico , Deleção de Genes , Mutação , Doenças das Plantas/microbiologia , RNA Fúngico , Saccharomyces cerevisiae/metabolismo
3.
Mol Plant Pathol ; 20(4): 562-574, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30537338

RESUMO

Many types of yeast have been studied in the last few years as potential biocontrol agents against different phytopathogenic fungi. Their ability to control plant diseases is mainly through combined modes of action. Among them, antibiosis, competition for nutrients and niches, induction of systemic resistance in plants and mycoparasitism have been the most studied. In previous work, we have established that the epiphytic yeast Pseudozyma aphidis inhibits Botrytis cinerea through induced resistance and antibiosis. Here, we demonstrate that P. aphidis adheres to B. cinerea hyphae and competes with them for nutrients. We further show that the secreted antifungal compounds activate the production of reactive oxygen species and programmed cell death in B. cinerea mycelium. Finally, P. aphidis and its secreted compounds negatively affect B. cinerea hyphae, leading to morphological alterations, including hyphal curliness, vacuolization and branching, which presumably affects the colonization ability and infectivity of B. cinerea. This study demonstrates additional modes of action for P. aphidis and its antifungal compounds against the plant pathogen B. cinerea.


Assuntos
Botrytis/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ustilaginales/patogenicidade , Apoptose/fisiologia , Micélio/metabolismo
4.
Front Plant Sci ; 6: 271, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25972879

RESUMO

Commercial cultivars of garlic, a popular condiment, are sterile, making genetic studies and breeding of this plant challenging. However, recent fertility restoration has enabled advanced physiological and genetic research and hybridization in this important crop. Morphophysiological studies, combined with transcriptome and proteome analyses and quantitative PCR validation, enabled the identification of genes and specific processes involved in gametogenesis in fertile and male-sterile garlic genotypes. Both genotypes exhibit normal meiosis at early stages of anther development, but in the male-sterile plants, tapetal hypertrophy after microspore release leads to pollen degeneration. Transcriptome analysis and global gene-expression profiling showed that >16,000 genes are differentially expressed in the fertile vs. male-sterile developing flowers. Proteome analysis and quantitative comparison of 2D-gel protein maps revealed 36 significantly different protein spots, 9 of which were present only in the male-sterile genotype. Bioinformatic and quantitative PCR validation of 10 candidate genes exhibited significant expression differences between male-sterile and fertile flowers. A comparison of morphophysiological and molecular traits of fertile and male-sterile garlic flowers suggests that respiratory restrictions and/or non-regulated programmed cell death of the tapetum can lead to energy deficiency and consequent pollen abortion. Potential molecular markers for male fertility and sterility in garlic are proposed.

5.
J Exp Bot ; 58(5): 1133-41, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17237158

RESUMO

Modern garlic (Allium sativum L.) cultivars are sterile and propagated only vegetatively. The recent discovery of fertile genotypes in Central Asia and the restoration of flowering and fertility by environmental manipulations open the way for in-depth florogenetic, genetic, and molecular research in garlic. In the present work, two bolting garlic accessions were employed: #3026, developing normal flowers and seeds, and #2509, in which flowers abort at the early stages of development. Morphological studies showed transition of the apical meristems from the vegetative to the reproductive stage and inflorescence initiation in both genotypes. Low temperatures promote transition of the apex and stem elongation, but have no effect on the phenotypic expression of the inflorescence development. The initial stages of reproductive development in non-flowering #2509 plants were followed by abortion of floral primordia at the differentiation stage. A search for genes involved in the control of flowering in garlic resulted in identification of the garlic LEAFY/FLO homologue, gaLFY. Further comparative analyses of gene expression revealed two gaLFY transcripts, differing in 64 nucleotides, with clear splicing borders. The short variant transcript was identified in both genotypes throughout all development stages, whereas the long variant appears in the flowering genotype #3026 only during reproductive development. The phenotypic differences in garlic, with regard to flowering, may be associated with the efficacy of the splicing process.


Assuntos
Alho/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Processamento de Proteína/fisiologia , Sequência de Aminoácidos , Flores/metabolismo , Flores/ultraestrutura , Alho/ultraestrutura , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Reprodução/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...