Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(14): 146201, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38640387

RESUMO

A surface photovoltage (SPV) is observed whenever a doped semiconductor with non-negligible band bending is illuminated by light and charge carriers are excited across the band gap. The sign of the SPV depends on the nature of the doping, the amplitude of the SPV increases with the fluence of the light illumination up to a saturation value, which is determined by the doping concentration. We have investigated Si(100) samples with well-characterized doping levels over a wide range of illumination fluences. Surprisingly, the sign of the SPV upon illumination with 532 nm photons reverses for some p-doping concentrations at high fluences. This is a new effect associated with a crossover between electronic excitations in the bulk and at the surface of the semiconductor.

2.
3.
Rev Sci Instrum ; 93(8): 083905, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050085

RESUMO

A 790-nm-driven high-harmonic generation source with a repetition rate of 6 kHz is combined with a toroidal-grating monochromator and a high-detection-efficiency photoelectron time-of-flight momentum microscope to enable time- and momentum-resolved photoemission spectroscopy over a spectral range of 23.6-45.5 eV with sub-100 fs time resolution. Three-dimensional (3D) Fermi surface mapping is demonstrated on graphene-covered Ir(111) with energy and momentum resolutions of ≲100 meV and ≲0.1 Å-1, respectively. The tabletop experiment sets the stage for measuring the kz-dependent ultrafast dynamics of 3D electronic structure, including band structure, Fermi surface, and carrier dynamics in 3D materials as well as 3D orbital dynamics in molecular layers.

4.
ACS Omega ; 7(24): 21183-21191, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755348

RESUMO

High-quality single crystals of the organic semiconductor (1,2;8,9)-dibenzopentacene were grown via physical vapor transport. The crystal structure-unknown before-was determined by single-crystal X-ray diffraction; polarization-dependent optical absorption measurements display a large anisotropy in the ac plane of the crystals. The overall Davydov splitting is ∼110 meV, which is slightly lower than that in the close relative pentacene (120 meV). Momentum-dependent electron energy-loss spectroscopy measurements show a clear exciton dispersion of the Davydov components. An analysis of the dispersion using a simple 1D model indicates smaller electron- and hole-transfer integrals in dibenzopentacene as compared to pentacene. The spectral weight distribution of the excitation spectra is strongly momentum-dependent and demonstrates a strong momentum-dependent admixture of Frenkel excitons, charge-transfer excitons, and vibrational modes.

5.
Nat Commun ; 13(1): 2741, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585096

RESUMO

Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics.

6.
J Phys Chem Lett ; 12(49): 11951-11959, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34881908

RESUMO

A prerequisite for advancing hybrid solar light harvesting systems is a comprehensive understanding of the spatiotemporal dynamics of photoinduced interfacial charge separation. Here, we demonstrate access to this transient charge redistribution for a model hybrid system of nanoporous zinc oxide (ZnO) and ruthenium bipyridyl chromophores. The site-selective probing of the molecular electron donor and semiconductor acceptor by time-resolved X-ray photoemission provides direct insight into the depth distribution of the photoinjected electrons and their interaction with the local band structure on a nanometer length scale. Our results show that these electrons remain localized within less than 6 nm from the interface, due to enhanced downward band bending by the photoinjected charge carriers. This spatial confinement suggests that light-induced charge generation and transport in nanoscale ZnO photocatalytic devices proceeds predominantly within the defect-rich surface region, which may lead to enhanced surface recombination and explain their lower performance compared to titanium dioxide (TiO2)-based systems.

7.
Struct Dyn ; 8(4): 044301, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34258326

RESUMO

We present a novel technique to monitor dynamics in interfacial systems through temporal correlations in x-ray photoelectron spectroscopy (XPS) signals. To date, the vast majority of time-resolved x-ray spectroscopy techniques rely on pump-probe schemes, in which the sample is excited out of equilibrium by a pump pulse, and the subsequent dynamics are monitored by probe pulses arriving at a series of well-defined delays relative to the excitation. By definition, this approach is restricted to processes that can either directly or indirectly be initiated by light. It cannot access spontaneous dynamics or the microscopic fluctuations of ensembles in chemical or thermal equilibrium. Enabling this capability requires measurements to be performed in real (laboratory) time with high temporal resolution and, ultimately, without the need for a well-defined trigger event. The time-correlation XPS technique presented here is a first step toward this goal. The correlation-based technique is implemented by extending an existing optical-laser pump/multiple x-ray probe setup by the capability to record the kinetic energy and absolute time of arrival of every detected photoelectron. The method is benchmarked by monitoring energy-dependent, periodic signal modulations in a prototypical time-resolved XPS experiment on photoinduced surface-photovoltage dynamics in silicon, using both conventional pump-probe data acquisition, and the new technique based on laboratory time. The two measurements lead to the same result. The findings provide a critical milestone toward the overarching goal of studying equilibrium dynamics at surfaces and interfaces through time correlation-based XPS measurements.

8.
Adv Mater ; 33(30): e2101682, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34085323

RESUMO

The design of new composite materials using extreme biomimetics is of crucial importance for bioinspired materials science. Further progress in research and application of these new materials is impossible without understanding the mechanisms of formation, as well as structural features at the molecular and nano-level. It presents a challenge to obtain a holistic understanding of the mechanisms underlying the interaction of organic and inorganic phases under conditions of harsh chemical reactions for biopolymers. Yet, an understanding of these mechanisms can lead to the development of unusual-but functional-hybrid materials. In this work, a key way of designing centimeter-scale macroporous 3D composites, using renewable marine biopolymer spongin and a model industrial solution that simulates the highly toxic copper-containing waste generated in the production of printed circuit boards worldwide, is proposed. A new spongin-atacamite composite material is developed and its structure is confirmed using neutron diffraction, X-ray diffraction, high-resolution transmission electron microscopy/selected-area electron diffraction, X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and electron paramagnetic resonance spectroscopy. The formation mechanism for this material is also proposed. This study provides experimental evidence suggesting multifunctional applicability of the designed composite in the development of 3D constructed sensors, catalysts, and antibacterial filter systems.


Assuntos
Materiais Biomiméticos/química , Biopolímeros/química , Cloretos/química , Cobre/química , Nanocompostos/química , Poluição Química da Água/prevenção & controle , Amônia/química , Catálise , Humanos , Conformação Molecular , Oxirredução , Porosidade , Impressão Tridimensional , Relação Estrutura-Atividade
9.
Nat Commun ; 12(1): 1196, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33608532

RESUMO

The ultrafast dynamics of photon-to-charge conversion in an organic light-harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C60. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction. The findings give strong support to the emerging realization that charge separation even from energetically disfavored excitonic states is contributing significantly, indicating new options for light harvesting in organic heterojunctions.

10.
J Phys Chem Lett ; 11(14): 5476-5481, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32545961

RESUMO

Progress in the development of plasmon-enabled light-harvesting technologies requires a better understanding of their fundamental operating principles and current limitations. Here, we employ picosecond time-resolved X-ray photoemission spectroscopy to investigate photoinduced electron transfer in a plasmonic model system composed of 20 nm sized gold nanoparticles (NPs) attached to a nanoporous film of TiO2. The measurement provides direct, quantitative access to transient local charge distributions from the perspectives of the electron donor (AuNP) and the electron acceptor (TiO2). On average, approximately two electrons are injected per NP, corresponding to an electron injection yield per absorbed photon of 0.1%. Back electron transfer from the perspective of the electron donor is dominated by a fast recombination channel proceeding on a time scale of 60 ± 10 ps and a minor contribution that is completed after ∼1 ns. The findings provide a detailed picture of photoinduced charge carrier generation in this NP-semiconductor junction, with important implications for understanding achievable overall photon-to-charge conversion efficiencies.

11.
Sci Rep ; 10(1): 6902, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327708

RESUMO

In this paper we present a facile method for the synthesis of aminated graphene derivative through simultaneous reduction and amination of graphene oxide via two-step liquid phase treatment with hydrobromic acid and ammonia solution in mild conditions. The amination degree of the obtained aminated reduced graphene oxide is of about 4 at.%, whereas C/O ratio is up to 8.8 as determined by means of X-ray photoelectron spectroscopy. The chemical reactivity of the introduced amine groups is further verified by successful test covalent bonding of the obtained aminated graphene with 3-Chlorobenzoyl chloride. The morphological features and electronic properties, namely conductivity, valence band structure and work function are studied as well, illustrating the influence of amine groups on graphene structure and physical properties. Particularly, the increase of the electrical conductivity, reduction of the work function value and tendency to form wrinkled and corrugated graphene layers are observed in the aminated graphene derivative compared to the pristine reduced graphene oxide. As obtained aminated graphene could be used for photovoltaic, biosensing and catalysis application as well as a starting material for further chemical modifications.

12.
Sci Adv ; 5(10): eaax2805, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31620556

RESUMO

Fabrication of biomimetic materials and scaffolds is usually a micro- or even nanoscale process; however, most testing and all manufacturing require larger-scale synthesis of nanoscale features. Here, we propose the utilization of naturally prefabricated three-dimensional (3D) spongin scaffolds that preserve molecular detail across centimeter-scale samples. The fine-scale structure of this collagenous resource is stable at temperatures of up to 1200°C and can produce up to 4 × 10-cm-large 3D microfibrous and nanoporous turbostratic graphite. Our findings highlight the fact that this turbostratic graphite is exceptional at preserving the nanostructural features typical for triple-helix collagen. The resulting carbon sponge resembles the shape and unique microarchitecture of the original spongin scaffold. Copper electroplating of the obtained composite leads to a hybrid material with excellent catalytic performance with respect to the reduction of p-nitrophenol in both freshwater and marine environments.


Assuntos
Biomimética , Colágeno/química , Carbono/química , Catálise , Colágeno/ultraestrutura , Cobre/química , Análise Espectral , Alicerces Teciduais/química
13.
Faraday Discuss ; 216(0): 414-433, 2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31020294

RESUMO

Electronic and lattice contributions to picosecond time-resolved X-ray absorption spectra (trXAS) of CuO at the oxygen K-edge are analyzed by comparing trXAS spectra, recorded using excitation wavelengths of 355 nm and 532 nm, to steady-state, temperature-dependent XAS measurements. The trXAS spectra at pump-probe time-delays ≥150 ps are dominated by lattice heating effects. Insight into the temporal evolution of lattice temperature profiles on timescales up to 100s of nanoseconds after laser excitation are reported, on an absolute temperature scale, with a temporal sensitivity and a spatial selectivity on the order of 10s of picoseconds and 10s of nanometers, respectively, effectively establishing an "ultrafast thermometer". In particular, for the 532 nm experiment at ∼5 mJ cm-2 fluence, both the initial sample temperature and its dynamic evolution are well captured by a one-dimensional thermal energy deposition and diffusion model. The thermal conductivity k = (1.3 ± 0.4) W m-1 K-1 derived from this model is in good agreement with the literature value for CuO powder, kpowder = 1.013 W m-1 K-1. For 355 nm excitation, a quantitative analysis of the experiments is hampered by the large temperature gradients within the probed sample volume owing to the small UV penetration depth. The impact of the findings on mitigating or utilizing photoinduced lattice temperature changes in future X-ray free electron laser (XFEL) experiments is discussed.

14.
Sci Rep ; 8(1): 14154, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237450

RESUMO

This paper reports a facile and green method for conversion of graphene oxide (GO) into graphene by low-temperature heating (80 °C) in the presence of a glass wafer. Compared to conventional GO chemical reduction methods, the presented approach is easy-scalable, operationally simple, and based on the use of a non-toxic recyclable deoxygenation agent. The efficiency of the proposed method is further expanded by the fact that it can be applied for reducing both GO suspensions and large-scale thin films formed on various substrates prior to the reduction process. The quality of the obtained reduced graphene oxide (rGO) strongly depends on the type of the used glass wafer, and, particularly, magnesium silicate glass can provide rGO with the C/O ratio of 7.4 and conductivity of up to 33000 S*cm-1. Based on the data obtained, we have suggested a mechanism of the observed reduction process in terms of the hydrolysis of the glass wafer with subsequent interaction of the leached alkali and alkali earth cations and silicate anions with graphene oxide, resulting in elimination of the oxygen-containing groups from the latter one. The proposed approach can be efficiently used for low-cost bulk-quantity production of graphene and graphene-based materials for a wide field of applications.

15.
J Phys Chem B ; 122(6): 1846-1851, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29350531

RESUMO

Using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, the carbon backbone of sodium copper chlorophyllin (SCC), a widely used chlorophyll derivative, and its breakdown products are analyzed to elucidate their electronic structure and physicochemical properties. Using various sample preparation methods and complementary spectroscopic methods (including UV/Vis, X-ray photoelectron spectroscopy), a comprehensive insight into the SCC breakdown process is presented. The experimental results are supported by density functional theory calculations, allowing a detailed assignment of characteristic NEXAFS features to specific C bonds. SCC can be seen as a model system for the large group of porphyrins; thus, this work provides a novel and detailed description of the electronic structure of the carbon backbone of those molecules and their breakdown products. The achieved results also promise prospective optical pump/X-ray probe investigations of dynamic processes in chlorophyll-containing photosynthetic complexes to be analyzed more precisely.


Assuntos
Clorofila/química , Cobre/química , Espectroscopia por Absorção de Raios X , Elétrons , Estrutura Molecular , Teoria Quântica
16.
Nanotechnology ; 27(32): 324005, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27363480

RESUMO

Monochromatic radiation with known absolute radiant power from an undulator at the electron storage ring Metrology Light Source (MLS) was used to irradiate PTB7 (a thieno[3, 4-b]thiophene-alt-benzodithiophene polymer) thin films at wavelengths (photon energies) of 185 nm (6.70 eV), 220 nm (5.64 eV), 300 nm (4.13 eV), 320 nm (3.88 eV), 356 nm (3.48 eV) and 675 nm (1.84 eV) under ultra-high vacuum conditions for the investigation of radiation-induced degradation effects. The characterization of the thin films is focused at ultraviolet photoelectron spectroscopy (UPS) of valence bands and is complemented by S 2p x-ray photoelectron spectroscopy (S 2p XPS) before and after the irradiation procedure. The radiant exposure was determined for each irradiation by means of photodiodes traceably calibrated to the international system of units SI. The valence band spectra show the strongest changes for the shortest wavelengths and no degradation effect at 356 nm and 675 nm even with the highest radiant exposure applied. In the spectral range where the Sun appears bright on the Earth's surface, no degradation effects are observed.

17.
J Chem Phys ; 143(15): 154708, 2015 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-26493923

RESUMO

We report the doping induced changes of the electronic structure of tetracene and pentacene probed by electron energy-loss spectroscopy in transmission. A comparison between the dynamic response of undoped and potassium-intercalated tetracene and pentacene emphasizes the appearance of a new excitation feature in the former gap upon potassium addition. Interestingly, the momentum dependency of this new excitation shows a negative dispersion. Moreover, the analysis of the C 1s and K 2p core-level excitation results in a significantly lower doping level compared to potassium doped picene, a recently discovered superconductor. Therefore, the present electronic structure investigations open a new pathway to better understand the exceptional differences between acenes and phenacene and their divergent behavior upon alkali doping.

18.
J Chem Phys ; 138(2): 024707, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23320713

RESUMO

We have prepared mixed phthalocyanine films out of MnPc and F(16)CoPc, which were characterized by means of photoemission spectroscopy and electron energy-loss spectroscopy. Our data reveal the formation of MnPc/F(16)CoPc charge transfer dimers in analogy to the related heterojunction. The electronic excitation spectrum of these blends is characterized by a new low energy excitation at 0.6 eV. Density functional theory calculations show that the new signal is caused by a strong absorption between the states of the interface induced two level system.

19.
J Chem Phys ; 137(11): 114508, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998272

RESUMO

We have performed electron energy-loss spectroscopy studies in order to investigate the electronic properties of chrysene molecular solids. The valence band electronic excitation spectra and the C 1s core level excitations have been measured for pristine and potassium doped chrysene. The core level studies show a fine structure which signals the presence of four close lying conduction bands close to the Fermi level. Upon potassium doping, these bands are filled with electrons, and we have reached a doping level of about K(2.7)chrysene. Furthermore, undoped chrysene is characterized by an optical gap of about 3.3 eV and five, relatively weak, excitonic features following the excitation onset. Doping induces major changes in the electronic excitation spectra, with a new, prominent low energy excitation at about 1.3 eV. The results of a Kramers-Kronig analysis indicate that this new feature can be assigned to a charge carrier plasmon in the doped material, and momentum dependent studies reveal a negative plasmon dispersion.


Assuntos
Crisenos/química , Elétrons , Fulerenos/química , Potássio/química , Espectroscopia de Perda de Energia de Elétrons , Estrutura Molecular
20.
J Chem Phys ; 136(20): 204708, 2012 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667582

RESUMO

We have carried out electron energy-loss investigations of the lowest singlet excitons in pentacene at 20 K. Our studies allow to determine the full exciton band structure in the a∗, b∗ reciprocal lattice plane. The lowest singlet exciton can move coherently within this plane, and the resulting exciton dispersion is highly anisotropic. The analysis of the energetically following (satellite) features indicates a strong admixture of charge transfer excitations to the exciton wave function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...